Skip to main content
Log in

Hydrogen sulfide degradation characteristics of Bordetella sp. Sulf-8 in a biotrickling filter

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The applicability of Bordetella sp. Sulf-8 to degrade Hydrogen Sulfide (H2S) gas in a biotrickling system was investigated. The isolate is a heterotrophic gram-negative, catalase- and oxidase-positive, rod-shaped bacterium which can metabolize thiosulfate or sulfide into sulfate. The mesophilic Bordetella sp. Sulf-8 can grow within a wide pH range using yeast as carbon source, with or without the presence of sulfur. In batch experiments, kinetic constants such as maximum specific growth rate (μ max = 0.12 1/h), saturation constant (K S = 0.017 g/L), and specific sulfur removal rate (88 mg S/g cells h) were obtained. In biotrickling experiments removal efficiencies were satisfactory, but the system performance was observed to be more influenced by empty bed residence time than by H2S feed gas concentration. Critical and maximum elimination capacities were 78.0 and 94.5 g H2S/m3 day, respectively. Macrokinetic analysis of the biotrickling system revealed maximum H2S removal rate V max = 15.97 g S/kg media-day and half saturation constant K S′ = 12.45 ppmv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dreisbach RH, Robertson WO (1987) Handbook of poisoning, 12th edn. Appleton and Lange, Norwalk, Connecticut

    Google Scholar 

  2. Zhang L, Schryver PD, Gusseme BD, Muynck WD, Boon N, Verstraete W (2008) Water Res 42:1–12

    Article  CAS  Google Scholar 

  3. MOE-KOREA (2004) Ministry of Environment: Odor Prevention Law

  4. Ramírez M, Gómez JM, Aroca G, Cantero D (2009) Bioresour Technol 100:4989–4995

    Article  Google Scholar 

  5. Devinny JS, Deshusses MA, Webster TS (1998) Biofiltration for air pollution control. CRC Press, FL

    Google Scholar 

  6. Cho KS, Hirai M, Shoda M (1991) J Ferment Bioeng 71:384–389

    Article  CAS  Google Scholar 

  7. Islander RL, Devinny JS, Mansfeld F, Postyn A, Hong S (1991) J Environ Eng 117:751–770

    Article  CAS  Google Scholar 

  8. Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Appl Environ Microbiol 62:1623–1629

    CAS  Google Scholar 

  9. Yang W, Vollertsen J, Hvitved-Jacobsen T (2005) Water Sci Technol 52:191–199

    CAS  Google Scholar 

  10. Nielsen PH, Raunkjaer K, Hvitved-Jacobsen TH (1998) Water Sci Technol 37:97–104

    CAS  Google Scholar 

  11. Kodama Y, Watanabe K (2003) Appl Environ Microbiol 69:107–112

    Article  CAS  Google Scholar 

  12. Sercu B, Núnez D, Aroca G, Boon N, Verstraete W, Langenhove HV (2005) Chem Eng J 113:127–134

    Article  CAS  Google Scholar 

  13. Cho KS, Hirai M, Shoda M (1992) J Ferment Bioeng 73:219–224

    Article  Google Scholar 

  14. Anja K, Peter S, Heide N (2006) Appl Environ Microbiol 72:4755–4760

    Article  Google Scholar 

  15. Chung YC, Lin YY, Tseng CP (2005) Bioresour Technol 96:1812–1820

    Article  CAS  Google Scholar 

  16. Hansen TA, van Gemerden H (1972) Arch Microbiol 86:49–56

    CAS  Google Scholar 

  17. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Curr Opin Microbiol 8:253–259

    Article  CAS  Google Scholar 

  18. Oren A, Padan E (1978) J Bacteriol 133:558–563

    CAS  Google Scholar 

  19. Trudinger PA (1967) J Bacteriol 93:550–559

    CAS  Google Scholar 

  20. Sorokin DY, Tourova TP, Muyzer G (2005) Syst Appl Microbiol 28:679–687

    Article  CAS  Google Scholar 

  21. Huang C, Chung YC, Hsu BM (1996) Biotechnol Tech 10:595–600

    Article  CAS  Google Scholar 

  22. Chung YC, Huang C, Tseng CP (1996) J Environ Sci Health A 31:1263–1278

    Article  Google Scholar 

  23. Nucleotide Basic Local Alignment Search Tool (2010) National Center for Biotechnology Information, Bethesda MD, USA. http://blast.ncbi.nlm.nih.gov/Blast.cgi . Accessed 12–16 Feb 2010

  24. Mathur AK, Majumder CB (2008) J Hazard Mater 152:1027–1036

    Article  CAS  Google Scholar 

  25. Chung YC, Huang C, Tseng CP (2001) Chemosphere 43:1043–1050

    Article  CAS  Google Scholar 

  26. Zhang L, Hirai M, Shoda M (1992) J Ferment Bioeng 74:174–178

    Article  CAS  Google Scholar 

  27. von Wintzingerode F, Schattke A, Siddiqui RA, Rosick U, Gobel UB, Gross R (2001) Int J Syst Evol Microbiol 51:1257–1265

    Google Scholar 

  28. De ley J, Segers P, Kersters K, Mannheim W, Lievens A (1986) Int J Syst Bacteriol 36:405–414

    Article  Google Scholar 

  29. Tuttle JH, Holmes PE, Jannasch HW (1974) Arch Microbiol 99:1–4

    Article  CAS  Google Scholar 

  30. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Arch Mikrobiol 84:54–68

    Article  CAS  Google Scholar 

  31. Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E (1996) Int J Syst Bacteriol 46:981–987

    Article  CAS  Google Scholar 

  32. Sublette KL, Sylvester ND (1987) Biotechnol Bioeng 29:753–758

    Article  CAS  Google Scholar 

  33. Cho KS, Ryu HW, Lee NY (2000) J Biosci Bioeng 90:25–31

    CAS  Google Scholar 

  34. Sercu B, Núñez D, Van Langenhove H, Aroca G, Verstraete W (2005) Biotechnol Bioeng 90:259–269

    Article  CAS  Google Scholar 

  35. Aroca G, Urrutia H, Núñez D, Oyarzun P, Arncibia A, Guerrero K (2007) Electron J Biotechnol 10:514–520

    Article  Google Scholar 

  36. Ruokojarvi A, Ruuskanen J, Martikainen PJ, Olkkonen M (2001) J Air Waste Manage 51:11–16

    CAS  Google Scholar 

  37. Hirai M, Kamamoto M, Yani M, Shoda M (2001) J Biosci Bioeng 91:396–402

    Article  CAS  Google Scholar 

  38. Potivichayanon S, Pokethitiyook P, Kruatrachue M (2006) Process Biochem 41:708–715

    Article  CAS  Google Scholar 

  39. Oyarzún P, Arancibia F, Canales C, Aroca GE (2003) Process Biochem 39:165–170

    Article  Google Scholar 

  40. Cho KS, Hirai M, Shoda M (1992) Appl Environ Microbiol 58:1183–1189

    CAS  Google Scholar 

  41. Chung YC, Huang C, Tseng CP (1996) Biotechnol Prog 12:773–778

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Research Foundation of Korea (NRF) grant [No. 2009-83876] and Priority Research Centers Program [No. 2009-0093816] funded by the Korea Government, Ministry of Education Science and Technology (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook-Jin Chung.

Additional information

Enkhdul Tuuguu: co-first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nisola, G.M., Tuuguu, E., Farnazo, D.M.D. et al. Hydrogen sulfide degradation characteristics of Bordetella sp. Sulf-8 in a biotrickling filter. Bioprocess Biosyst Eng 33, 1131–1138 (2010). https://doi.org/10.1007/s00449-010-0440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0440-8

Keywords

Navigation