Skip to main content
Log in

Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present study, the marine actinobacteria mediated biosynthesis of silver nanoparticles (AgNps) was achieved using Streptomyces sp LK3. The synthesized AgNps showed the characteristic absorption spectra in UV–vis at 420 nm, which confirmed the presence of nanoparticles. XRD analysis showed intense peaks at 2θ values of 27.51°, 31.87°, 45.57°, 56.56°, 66.26°, and 75.25° corresponding to (210), (113), (124), (240), (226), and (300) Bragg’s reflection based on the fcc structure of AgNps. The FTIR spectra exhibited prominent peaks at 3,417 cm−1 (OH stretching due to alcoholic group) and 1,578 cm−1 (C=C ring stretching). TEM micrograph showed that the synthesized AgNps were spherical in shape with an average size of 5 nm. Surface morphology and topographical structure of the synthesized AgNps were dignified by AFM. The synthesized AgNps showed significant acaricidal activity against Rhipicephalus microplus and Haemaphysalis bispinosa with LC50 values of 16.10 and 16.45 mg/L, respectively. Our results clearly indicate that AgNps could provide a safer alternative to conventional acaricidal agents in the form of a topical antiparasitic formulation. The present study aimed to develop a novel, cost-effective, eco-friendly actinobacteria mediated synthesis of AgNps and its antiparasitic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaushik NT, Snehit SMMS, Rasesh Y, Parikh MS (2009) Nanomed Nanotechnol Biol Med 10:1–6

    Google Scholar 

  2. Kowshik M, Ashtaputre S, Kharrazi S (2003) Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  3. Duran N, Marcato PD, Alves O, Souza G, Esposito E (2005) J Nanotechnol 3:8

    Google Scholar 

  4. Lam KS (2006) Curr Opin Microbiol 9:245–251

    Article  CAS  Google Scholar 

  5. Rahulan R, Nampoothiri KM, Szakacs G, Nagy V, Pandey A (2009) Biochem Eng J 43:64–71

    Article  CAS  Google Scholar 

  6. Rahulan R, Pandey A, Nampoothiri KM (2011) Curr Microbiol 62(3):1009–1016

    Article  CAS  Google Scholar 

  7. Takahashi A, Kurasawa S, Ikeda D, Okami Y, Takeuchi T (1989) J Antibiot (Tokyo) 42(11):1556–1561

    Article  CAS  Google Scholar 

  8. Karthik L, Gaurav K, Bhaskara Rao KV, Rajakumar G, Rahuman AA (2011) Parasitol Res 108:1447–1455

    Article  CAS  Google Scholar 

  9. Kim JD, Han JW, Hwang IC, Lee D, Kim BS (2012) J Basic Microbiol 52(2):150–159

    Article  CAS  Google Scholar 

  10. Baz M, Tran D, Kettani-Halabi M, Samri SE, Jamjari A, Biligui B, Meimoun P, El-Maarouf-Bouteau H, Garmier M, Saindrenan P, Ennaji MM, Barakate M, Bouteau F (2012) J Appl Microbiol 112(4):782–792

    Article  CAS  Google Scholar 

  11. Palaniyandi SA, Yang SH, Cheng JH, Meng L, Suh JW (2011) J Appl Microbiol 111(2):443–455

    Article  CAS  Google Scholar 

  12. Yu Z, Vodanovic-Jankovic S, Ledeboer N, Huang SX, Rajski SR, Kron M, Shen B (2011) Org Lett 13(8):2034–2037

    Article  CAS  Google Scholar 

  13. Iliĉ SB, Konstantinoviĉ SS, Todoroviĉ ZB, Laziĉ ML, Veljkoviĉ VB, Jokoviĉ N, Radovanoviĉ BC (2007) Mikrobiologiia 76(4):480–487

    Google Scholar 

  14. Graf JF, Gogolewski R, Leach BN (2004) Parasitology 129:S247–S442

    Article  Google Scholar 

  15. Sabatini GA, Kemp DH, Hughes S, Nari A, Hansen J (2001) Vet Parasitol 95:53–62

    Article  CAS  Google Scholar 

  16. Ducornez S, Barré N, Miller RJ, de Garine-Wichatisky M (2005) Vet Parasitol 130:285–292

    Article  CAS  Google Scholar 

  17. Choi O, Hu Z (2008) Environ Sci Technol 15(12):4583–4588

    Article  Google Scholar 

  18. Singh SK, Goswami K, Sharma RD, Reddy MV, Dash D (2012) Int J Nanomedicine 7:1023–1030

    CAS  Google Scholar 

  19. Said DE, Elsamad LM, Gohar YM (2012) Parasitol Res 111(2):545–554

    Article  CAS  Google Scholar 

  20. Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, Rafailovich M (2011) Int J Nanomedicine 6:2705–2714

    Article  CAS  Google Scholar 

  21. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Parasitol Res 109(3):823–831

    Article  Google Scholar 

  22. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Parasitol Res 108(3):693–702

    Article  Google Scholar 

  23. Karthik L, Kumar G, Bhaskara Rao KV (2010) Int J Pharm Pharmaceut Sci 2:199–203

    Google Scholar 

  24. Rajakumar G, Rahuman AA (2012) Res Vet Sci 93(1):303–309

    Article  CAS  Google Scholar 

  25. Zahir AA, Rahuman AA (2012) Vet Parasitol 187:511–520

    Article  Google Scholar 

  26. Reddy PJ, Krishna D, Murthy US, Jamil K (1992) Comput Appl Biosci 8:209–213

    CAS  Google Scholar 

  27. Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo BA, Drachev VP, Pino JA, Marbot R, Aguero J (2003) J Essent Oil Res 15(6):374–375

    Google Scholar 

  28. Ahmad A, Mukherjee P, Senapati S, Mandal D, Islam Khan M, Kumar R, Sastry M (2003) Colloids Surf B 28(4):313–318

    Article  CAS  Google Scholar 

  29. Patil R, Jeyasekaran G, Shanmugam SA, Jeya Shakila R (2001) Ind J Marine Sci 30:264–267

    Google Scholar 

  30. Sujatha P, Bapiraju K, Ramana T (2005) World J Microbiol Biotechnol 21:583–585

    Article  Google Scholar 

  31. Dharmaraj S, Alagarsamy S (2009) World J Microbiol Biotechnol 25:1971–1979

    Article  CAS  Google Scholar 

  32. Saurav K, Rajakumar G, Kannabiran K, Rahuman AA, Velayutham K, Elango G, Kamaraj C, Zahir AA (2013) Parasitol Res 112:215–226

    Article  Google Scholar 

  33. Deepika TL, Kannabiran K, Khanna VG, Rajakumar G, Jayaseelan C, Santhoshkumar T, Rahuman AA (2012) Parasitol Res 111(3):1151–1163

    Article  Google Scholar 

  34. Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P, Liu H (2012) Bioresour Technol 103(1):273–278

    Article  CAS  Google Scholar 

  35. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Int J Mol Sci 13(1):466–476

    CAS  Google Scholar 

  36. Elavazhagan T, Arunachalam KD (2011) Int J Nanomedicine 6:1265–1278

    Article  CAS  Google Scholar 

  37. Sadhasivam S, Shanmugam P, Yun K (2010) Colloids Surf B 81:358–362

    Article  CAS  Google Scholar 

  38. Kiran GS, Sabu A, Selvin J (2010) J Biotechnol 148(4):221–225

    Article  CAS  Google Scholar 

  39. Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Kottaisamy M, BarathmaniKanth S, Kartikeyan B, Gurunathan S (2010) Colloids Surf B 77(2):257–262

    Article  CAS  Google Scholar 

  40. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Parasitol Res 108(6):1541–1549

    Article  Google Scholar 

  41. Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G, Velayutham K, Bhaskara Rao KV, Karthik L, Raveendran S (2012) Parasitol Res 111(2):921–933

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Management of VIT University for providing necessary facilities to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Bhaskara Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthik, L., Kumar, G., Kirthi, A.V. et al. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37, 261–267 (2014). https://doi.org/10.1007/s00449-013-0994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0994-3

Keywords

Navigation