Skip to main content
Log in

Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zarie ES, Kaidas V, Gedamu D, Mishra YK, Adelung R, Furkert FH, Scherließ R, Steckel H, Groessner-Schreiber B (2012) Solvent free fabrication of micro and nanostructured drug coatings by thermal evaporation for controlled release and increased effects. PLoS One. doi:10.1371/journal.pone.0040746

    Google Scholar 

  2. Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Stürmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824. doi:10.1002/anie.200300599

    Article  CAS  Google Scholar 

  3. Dlugy C, Wolfson A (2007) Lipase catalyse glycerolysis for kinetic resolution of racemates. Bioprocess Biosyst Eng 30:327–330. doi:10.1007/s00449-007-0128-x

    Article  CAS  Google Scholar 

  4. Ghanem A, Aboul-Enein HY (2004) Lipase-mediated chiral resolution of racemates in organic solvents. Tetrahedron Asymmetr 15:3331–3351. doi: 10.1016/j.tetasy.2004.09.019

  5. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569. doi:10.1016/j.procbio.2012.01.011

    Article  CAS  Google Scholar 

  6. Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  7. Sheldon RA (2007) Enzyme Immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307. doi:10.1002/adsc.200700082

    Article  CAS  Google Scholar 

  8. Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307. doi:10.1039/c2cs35231a

    Article  CAS  Google Scholar 

  9. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650. doi:10.1007/s10529-009-0076-4

    Article  CAS  Google Scholar 

  10. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685. doi:10.1021/ja021223n

    Article  CAS  Google Scholar 

  11. Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904. doi:10.1002/adsc.201100534

    Article  CAS  Google Scholar 

  12. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463. doi:10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  13. Lei J, Fan J, Yu C, Zhang L, Jiang S, Tu B, Zhao D (2004) Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous Mesoporous Mater 73:121–128. doi:10.1016/j.micromeso.2004.05.004

    Article  CAS  Google Scholar 

  14. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030. doi:10.1039/b512706h

    Article  CAS  Google Scholar 

  15. Weiser D, Boros Z, Hornyánszky G, Tóth A, Poppe L (2012) Disubstituted dialkoxysilane precursors in binary and ternary sol–gel systems for lipase immobilization. Process Biochem 47:428–434. doi:10.1016/j.procbio.2011.11.023

    Article  CAS  Google Scholar 

  16. Lalonde J, Margolin A (2008) Immobilization of enzymes. In: Drauz K, Waldmann H (eds) Enzym. catal. org. synth. Wiley-VCH Verlag GmbH, Weinheim, pp 163–184

    Google Scholar 

  17. Lee S-M, Jin LH, Kim JH, Han SO, Bin NaH, Hyeon T, Koo Y-M, Kim J, Lee J-H (2010) Beta-glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess Biosyst Eng 33:141–147. doi:10.1007/s00449-009-0386-x

    Article  CAS  Google Scholar 

  18. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523. doi:10.1016/j.biotechadv.2011.09.005

    Article  CAS  Google Scholar 

  19. Wu L, Yuan X, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci 250:167–173. doi:10.1016/j.memsci.2004.10.024

    Article  CAS  Google Scholar 

  20. Sóti PL, Telkes L, Rapi Z, Tóth A, Vigh T, Nagy ZK, Bakó P, Marosi G (2014) Synthesis of an aza chiral crown ether grafted to nanofibrous silica support and application in asymmetric Michael addition. J Inorg Organomet Polym Mater 24:713–721. doi:10.1007/s10904-014-0037-9

    Article  CAS  Google Scholar 

  21. Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010) Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Bioresour Technol 101:7344–7349. doi:10.1016/j.biortech.2010.04.036

    Article  CAS  Google Scholar 

  22. Huang X-J, Chen P-C, Huang F, Ou Y, Chen M-R, Xu Z-K (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100. doi:10.1016/j.molcatb.2011.02.010

    Article  CAS  Google Scholar 

  23. Nakane K, Ogihara T, Ogata N, Yamaguchi S (2005) Formation of lipase-immobilized poly(vinyl alcohol) nanofiber and its application to flavor ester synthesis. Sen’i Gakkaishi 61:313–316. doi:10.2115/fiber.61.313

    Article  CAS  Google Scholar 

  24. Sakai S, Antoku K, Yamaguchi T, Kawakami K (2008) Development of electrospun poly(vinyl alcohol) fibers immobilizing lipase highly activated by alkyl-silicate for flow-through reactors. J Membr Sci 325:454–459. doi:10.1016/j.memsci.2008.08.008

    Article  CAS  Google Scholar 

  25. Zhou Y, Lim L-T (2009) Activation of lactoperoxidase system in milk by glucose oxidase immobilized in electrospun polylactide microfibers. J Food Sci 74:170–176. doi:10.1111/j.1750-3841.2009.01071.x

    Article  CAS  Google Scholar 

  26. Sóti PL, Nagy ZK, Serneels G, Vajna B, Farkas A, Van der Gucht F, Fekete P, Vigh T, Wagner I, Balogh A, Pataki H, Mező G, Marosi G (2015) Preparation and comparison of spray dried and electrospun bioresorbable drug delivery systems. Eur Polym J 68:671–679. doi:10.1016/j.eurpolymj.2015.03.035

  27. Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299. doi:10.1021/ja00389a064

    Article  CAS  Google Scholar 

  28. Tomin A, Hornyánszky G, Kupai K, Dorkó Z, Ürge L, Darvas F, Poppe L (2010) Lipase-catalyzed kinetic resolution of 2-methylene-substituted cycloalkanols in batch and continuous-flow modes. Process Biochem 45:859–865. doi:10.1016/j.procbio.2010.02.006

    Article  CAS  Google Scholar 

  29. Tomin A, Weiser D, Hellner G, Bata Z, Corici L, Péter F, Koczka B, Poppe L (2011) Fine-tuning the second generation sol–gel lipase immobilization with ternary alkoxysilane precursor systems. Process Biochem 46:52–58. doi:10.1016/j.procbio.2010.07.021

    Article  CAS  Google Scholar 

  30. Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273. doi:10.1016/S0032-3861(97)00229-2

    Article  CAS  Google Scholar 

  31. Kurbanoglu EB, Zilbeyaz K, Kurbanoglu NI, Ozdal M, Taskin M, Algur OF (2010) Continuous production of (S)-1-phenylethanol by immobilized cells of Rhodotorula glutinis with a specially designed process. Tetrahedron Asymmetr 21:461–464. doi:10.1016/j.tetasy.2010.01.019

    Article  CAS  Google Scholar 

  32. Queiroz N, Nascimento MG (2002) Pseudomonas sp. lipase immobilized in polymers versus the use of free enzyme in the resolution of (R, S)-methyl mandelate. Tetrahedron Lett 43:5225–5227. doi:10.1016/S0040-4039(02)01057-2

    Article  CAS  Google Scholar 

  33. Högberg H-E (2008) Exploiting enantioselectivity of hydrolases in organic solvents organic. Synthesis with enzymes in non-aqueous media. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

Download references

Acknowledgments

The research was supported by the OTKA Research Fund (code 112644 and code 108975). Besides this project is supported by the New Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002), János Bolyai Research Scholarship of the Hungarian Academy of Sciences and MedInProt Project. The authors would like to express their special thanks to NanGenex Inc., (Budapest, Hungary) for DLS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Lajos Sóti.

Additional information

L. Poppe and G. Marosi have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sóti, P.L., Weiser, D., Vigh, T. et al. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases. Bioprocess Biosyst Eng 39, 449–459 (2016). https://doi.org/10.1007/s00449-015-1528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1528-y

Keywords

Navigation