Skip to main content

Advertisement

Log in

Selective adsorption of palladium and platinum from secondary wastewater using Escherichia coli BL21 and Providencia vermicola

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

It is important to recover precious metals from secondary wastewater because of their low crustal abundance. The selective adsorption of palladium (Pd) and platinum (Pt) ions from secondary wastewater, which contains a large amount aluminium and sodium ions, was investigated using Escherichia coli BL21 (BL21), genetically modified E. coli BL21 (EC20) and Providencia vermicola (P. V.). The results demonstrated that P.V., BL21 and EC20 cells took 95.9%, 88.2% and 97.5% of Pd ions, and 64.8%, 93.2% and 100% of Pt ions form industrial wastewater, respectively. All three bacterial biomass could be reused for Pd adsorption with a second adsorption efficiency of > 85%, specifically, the EC20 cells could absorb 93.8% of Pd ions from wastewater. SEM–EDS and XPS analyses confirmed the occurrence of Pd and Pt on the surface of wastewater-absorbed biomass. The shift in FTIR spectrum implied that functional groups, such as hydroxyl, amino, carboxyl and phosphate groups, were involved in wastewater adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BL21 cells:

Escherichia coli BL21 (DE3) cells

EC20 cells:

E. coli BL21 cells with EC20 protein displayed

P.V. cells:

Providencia vermicola

References

  1. Cui J, Zhu N, Kang N, Ha C, Shi C, Wu P (2017) Biorecovery mechanism of palladium as nanoparticles by Enterococcus faecalis: from biosorption to bioreduction. Chem Eng J 328:1051–1057

    Article  CAS  Google Scholar 

  2. Rao C, Reddi G (2000) Platinum group metals (PGM); occurrence, use and recent trends in their determination. TrAC Trends Analyt Chem 19:565–586

    Article  CAS  Google Scholar 

  3. Kraemer D, Junge M, Bau M (2017) Oxidized ores as future resource for platinum group metals: current state of research. Chem Ing Tech 89:53–63

    Article  CAS  Google Scholar 

  4. Platinum Quarterly Q1 2016, World Platinum Investment Council, London 2016. https://www.platinuminvestment.com/files/934215/WPIC_Platinum_Quarterly_Q1_2016.pdf. Accessed 21 May 2020

  5. M. Schmidt, Rohstoffrisikobewertung - Platingruppenmetalle, DERA Rohstoffinformationen 26, Deutsche Rohstoffagentur, Berlin 2015. http://www.deutsche-rohstoffagentur.de/DERA/DE/Downloads/studie_Platin_2015.pdf%3F__blob%3DpublicationFile%26v%3D2. Accessed 21 May 2020

  6. Ju X, Igarashi K, Si Miyashita, Mitsuhashi H, Inagaki K, Si Fujii, Sawada H, Kuwabara T, Minoda A (2016) Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria. Bioresour Technol 211:759–764

    Article  CAS  Google Scholar 

  7. De Corte S, Hennebel T, De Gusseme B, Verstraete W, Boon N (2012) Bio-palladium: from metal recovery to catalytic applications. Microb Biotechnol 5:5–17

    Article  CAS  Google Scholar 

  8. Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77:593–601

    Article  CAS  Google Scholar 

  9. De Vargas I, Macaskie LE, Guibal E (2004) Biosorption of palladium and platinum by sulfate-reducing bacteria. Technol Biotechnol 79:49–56

    Article  CAS  Google Scholar 

  10. Xu H, Tan L, Cui H, Xu M, Xiao Y, Wu H, Dong H, Liu X, Qiu G, Xie J (2018) Characterization of Pd(II) biosorption in aqueous solution by Shewanella oneidensis MR-1. J Mol Liq 255:333–340

    Article  CAS  Google Scholar 

  11. Lengke MF, Fleet ME, Southam G (2007) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium (II) chloride complex. Langmuir 23:8982–8987

    Article  CAS  Google Scholar 

  12. Kim S, Song M-H, Wei W, Yun Y-S (2015) Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)-Pd(II) binary solution. J Hazard Mater 283:657–662

    Article  CAS  Google Scholar 

  13. Won SW, Mao J, Kwak IS, Sathishkumar M, Yun YS (2010) Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresour Technol 101:1135–1140

    Article  CAS  Google Scholar 

  14. Tan L, Xiao Y, Cui H, Xu H, Xu M, Wu H, Dong H, Qiu G, Liu X, Xie J (2018) Influence of sulfhydryl sites on palladium (II) adsorption by displaying EC20 on the surface of Escherichia coli. J Chem Technol Biotechnol 93:3569–3581

    Article  CAS  Google Scholar 

  15. Fungene T, Mahlangu T, Effluent treatment: what role can modified waste/biomass play in the local platinum industry—a review. In: International platinum conference, 2010

  16. Adhikari CR, Parajuli D, Inoue K, Ohto K, Kawakita H, Harada H (2008) Recovery of precious metals by using chemically modified waste paper. New J Chem 32:1634–1641

    Article  CAS  Google Scholar 

  17. Ye J, Yin H, Mai B, Peng H, Qin H, He B, Zhang N (2010) Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresour Technol 101:3893–3902

    Article  CAS  Google Scholar 

  18. Tan L, Dong H, Liu X, He J, Xu H, Xie J (2017) Mechanism of palladium (II) biosorption by Providencia vermicola. RSC Adv 7:7060–7072

    Article  CAS  Google Scholar 

  19. Garole DJ, Choudhary BC, Paul D, Borse AU (2018) Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent. Environ Sci Pollut R 25:10911–10925

    Article  CAS  Google Scholar 

  20. Choudhary BC, Paul D, Borse AU, Garole DJ (2017) Recovery of palladium from secondary waste using soluble tannins cross-linked Lagerstroemia speciosa leaves powder. J Chem Technol Biot 92:1667–1677

    Article  CAS  Google Scholar 

  21. Choudhary BC, Paul D, Borse AU, Garole DJ (2018) Surface functionalized biomass for adsorption and recovery of gold from electronic scrap and refinery wastewater. Sep Purif Technol 195:260–270

    Article  CAS  Google Scholar 

  22. Salem NM, Awwad AM (2014) Biosorption of Ni(II) from electroplating wastewater by modified (Eriobotrya japonica) loquat bark. J Saudi Chem Soc 18:379–386

    Article  CAS  Google Scholar 

  23. Olukanni D, Agunwamba J, Ugwu E (2014) Biosorption of heavy metals in industrial wastewater using micro-organisms (Pseudomonas aeruginosa). Am J Sci Ind Res 5:81–87

    Google Scholar 

  24. Cho CW, Kang SB, Kim S, Yun YS, Won SW (2016) Reusable polyethylenimine-coated polysulfone/bacterial biomass composite fiber biosorbent for recovery of Pd(II) from acidic solutions. Chem Eng J 302:545–551

    Article  CAS  Google Scholar 

  25. Esteves A, Valdman E, Leite S (2000) Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. Biotechnol Lett 22:499–502

    Article  CAS  Google Scholar 

  26. Tan L, Cui H, Xiao Y, Xu H, Xu M, Wu H, Dong H, Qiu G, Liu X, Xie J (2019) Enhancement of platinum biosorption by surface-displaying EC20 on Escherichia coli. Ecotoxicol Environ Saf 169:103–111

    Article  CAS  Google Scholar 

  27. Kazy SK, D’Souza S, Sar P (2009) Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization. J Hazard Mater 163:65–72

    Article  CAS  Google Scholar 

  28. Wang J, He S, Xu L, Gu N (2007) Transmission electron microscopy and atomic force microscopy characterization of nickel deposition on bacterial cells. Chin Sci Bull 52:2919–2924

    Article  CAS  Google Scholar 

  29. Charanpahari A, Umare S, Sasikala R (2013) Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2. Appl Surf Sci 282:408–414

    Article  CAS  Google Scholar 

  30. Zhu X, Xiang J, Li J, Feng C, Liu P, Xiang B (2018) Tunable photoluminescence of MoS2 quantum dots passivated by different functional groups. J Colloid Interface Sci 511:209–214

    Article  CAS  Google Scholar 

  31. Unsworth NK, Hancox I, Dearden CA, Sullivan P, Walker M, Lilley R, Sharp J, Jones TS (2014) Comparison of dimethyl sulfoxide treated highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) electrodes for use in indium tin oxide-free organic electronic photovoltaic devices. Org Electron 15:2624–2631

    Article  CAS  Google Scholar 

  32. Liu ZQ, Ding LX, Wang ZL, Mao YC, Xie SL, Zhang YM, Li GR, Tong YX (2012) ZnO/SnO2 hierarchical and flower-like nanostructures: facile synthesis, formation mechanism, and optical and magnetic properties. CrystEngComm 14:2289–2295

    Article  CAS  Google Scholar 

  33. Zhang G, Feng P, Zhang W, Liu H, Wang C, Ma H, Wang D, Tian Z (2017) Single isomerization selectivity of glucose in methanol over Sn-BEC zeolite of homogenous Sn distribution. Micropor Mesopor Mat 247:158–165

    Article  CAS  Google Scholar 

  34. Park J, Won SW, Mao J, Kwak IS, Yun YS (2010) Recovery of Pd(II) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. J Hazard Mater 181:794–800

    Article  CAS  Google Scholar 

  35. Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK (2013) Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Biostruct 3:1–8

    Google Scholar 

  36. Yin Y, Hu Y, Xiong F (2011) Sorption of Cu(II) and Cd(II) by extracellular polymeric substances (EPS) from Aspergillus fumigatus. Int Biodeterior Biodegrad 65:1012–1018

    Article  CAS  Google Scholar 

  37. Song HP, Li XG, Sun JS, Xu SM, Han X (2008) Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere 72:616–621

    Article  CAS  Google Scholar 

  38. Xu H, Tan L, Dong H, He J, Liu X, Qiu G, He Q, Xie J (2017) Competitive biosorption behavior of Pt(IV) and Pd (II) by Providencia vermicola. RSC Adv 7:32229–32235

    Article  CAS  Google Scholar 

  39. Yu Q, Szymanowski J, Myneni SCB, Fein JB (2014) Characterization of sulfhydryl sites within bacterial cell envelopes using selective site-blocking and potentiometric titrations. Chem Geol 373:50–58

    Article  CAS  Google Scholar 

  40. Raso SW, Clark PL, Haase-Pettingell C, King J, Junior GJT (2001) Distinct cysteine sulfhydryl environments detected by analysis of Raman S-H markers of Cys → Ser mutant proteins 1. J Mol Biol 307:899–911

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the anonymous reviewers for their constructive comments that have improved the presentation of this work. This work was supported by National Natural Science Foundation of China (51871250, 51504106), the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (SKL-SPM-201809), State Key Laboratory of Applied Microbiology Southern China (SKYAM005-2016), the Yunnan Science and Technology Plan Project of China (2015FB204, 2016BA006,2017FA030), the Fundamental Research Funds for the Central Universities of Central South University (2017zzts080, 2018zzts808), GDAS’ Special Project of Science and Technology Development (2017GDASCX-0401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Wu, H., Cui, H. et al. Selective adsorption of palladium and platinum from secondary wastewater using Escherichia coli BL21 and Providencia vermicola. Bioprocess Biosyst Eng 43, 1885–1897 (2020). https://doi.org/10.1007/s00449-020-02378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02378-6

Keywords

Navigation