Skip to main content
Log in

Isotonic Regression for Multiple Independent Variables

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper gives algorithms for determining isotonic regressions for weighted data at a set of points P in multidimensional space with the standard componentwise ordering. The approach is based on an order-preserving embedding of P into a slightly larger directed acyclic graph (dag) G, where the transitive closure of the ordering on P is represented by paths of length 2 in G. Algorithms are given which, compared to previous results, improve the time by a factor of \(\tilde{\varTheta}(|P|)\) for the L 1, L 2, and L metrics. A yet faster algorithm is given for L 1 isotonic regression with unweighted data. L isotonic regression is not unique, and algorithms are given for finding L regressions with desirable properties such as minimizing the number of large regression errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1

Similar content being viewed by others

References

  1. Angelov, S., Harb, B., Kannan, S., Wang, L.-S.: Weighted isotonic regression under the L 1 norm. In: Symposium on Discrete Algorithms (SODA), pp. 783–791 (2006)

    Google Scholar 

  2. Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., Silverman, E.: An empirical distribution function for sampling with incomplete information. Ann. Math. Stat. 5, 641–647 (1955)

    Article  MathSciNet  Google Scholar 

  3. Barlow, R.E., Bartholomew, D.J., Bremner, J.M., Brunk, H.D.: Statistical Inference Under Order Restrictions: the Theory and Application of Isotonic Regression. Wiley, New York (1972)

    MATH  Google Scholar 

  4. Barlow, R.E., Brunk, H.D.: The isotonic regression problem and its dual. J. Am. Stat. Soc. 67, 140–147 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beran, R., Dümbgen, L.: Least squares and shrinkage estimation under bimonotonicity constraints. Stat. Comput. 20, 177–189 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bril, G., Dykstra, R., Pillars, C., Robertson, T.: Algorithm AS 206: isotonic regression in two independent variables. J. R. Stat. Soc., Ser. C, Appl. Stat. 33, 352–357 (1984)

    Google Scholar 

  7. Burdakov, O., Grimvall, A., Hussian, M.: A generalized PAV algorithm for monotonic regression in several variables. In: Proceedings of COMPSTAT’2004 (2004)

    Google Scholar 

  8. Chandrasekaran, R., Rhy, Y.U., Jacob, V.S., Hong, S.: Isotonic separation. INFORMS J. Comput. 17, 462–474 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dembczynski, K., Greco, S., Kotlowski, W., Slowinski, R.: Statistical model for rough set approach to multicriteria classification. In: PKDD 2007: 11th European Conference on Principles and Practice Knowledge Discovery in Databases. Springer Lecture Notes in Computer Science, vol. 4702, pp. 164–175 (2007)

    Chapter  Google Scholar 

  10. Dette, H., Scheder, R.: Strictly monotone and smooth nonparametric regression for two or more variables. Can. J. Stat. 34, 535–561 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dykstra, R., Hewett, J., Robertson, T.: Nonparametric, isotonic discriminant procedures. Biometrika 86, 429–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dykstra, R.L., Robertson, T.: An algorithm for isotonic regression of two or more independent variables. Ann. Stat. 10, 708–716 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gamarnik, D.: Efficient learning of monotone concepts via quadratic optimization. In: Proceedings of Computational Learning Theory (COLT), pp. 134–143 (1998)

    Google Scholar 

  14. Gebhardt, F.: An algorithm for monotone regression with one or more independent variables. Biometrika 57, 263–271 (1970)

    Article  MATH  Google Scholar 

  15. Gudmundsson, J., Klein, O., Knauer, C., Smid, M.: Small Manhattan networks and algorithmic applications for the earth mover’s distance. In: Proceedings 23rd European Workshop on Computational Geometry, pp. 174–177 (2007)

    Google Scholar 

  16. Hanson, D.L., Pledger, G., Wright, F.T.: On consistency in monotonic regression. Ann. Stat. 1, 401–421 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm. BIT Numer. Math. 32, 249–267 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jackson, D.: Note on the median of a set of numbers. Bull. Am. Math. Soc., pp. 160–164 (1921)

  19. Kalai, A.T., Sastry, R.: The isotron algorithm: high-dimensional isotonic regression. In: Proceedings of Computational Learning Theory (COLT) (2009)

    Google Scholar 

  20. Kaufman, Y., Tamir, A.: Locating service centers with precedence constraints. Discrete Appl. Math. 47, 251–261 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Legg, D., Townsend, D.: Best monotone approximation in L [0, 1]. J. Approx. Theory 42, 30–35 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Luss, R., Rosset, S., Shahar, M.: Decomposing isotonic regression for efficiently solving large problems, In: Proceedings of Neural Information Processing Systems (2010)

    Google Scholar 

  23. Maxwell, W.L., Muckstadt, J.A.: Establishing consistent and realistic reorder intervals in production-distribution systems. Oper. Res. 33, 1316–1341 (1985)

    Article  MATH  Google Scholar 

  24. Megido, N.: Linear-time algorithms for linear programming in ℜ3 and related problems. SIAM J. Comput. 12, 759–776 (1983)

    Article  MathSciNet  Google Scholar 

  25. Meyer, M.: Inference for multiple isotonic regression (2010). www.stat.colostate.edu/research/TechnicalReports/2010/2010_2.pdf

  26. Moon, T., Smola, A., Chang, Y., Zheng, Z.: IntervalRank—isotonic regression with listwise and pairwise constraints. In: Proceedings Web Search and Data Mining, pp. 151–160 (2010)

    Google Scholar 

  27. Mukarjee, H., Stern, S.: Feasible nonparametric estimation of multiargument monotone functions. J. Am. Stat. Assoc. 89, 77–80 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pólya, G.: Sur une algorithme toujours convergent pour obtenir les polynomes de meillure approximation de Tchebycheff pour un fonction continue quelconque. Comptes Rendus 157, 840–843 (1913)

    MATH  Google Scholar 

  29. Punera, K., Ghosh, J.: Enhanced hierarchical classification via isotonic smoothing. In: Proceedings International Conference on the World Wide Web, pp. 151–160 (2008)

    Google Scholar 

  30. Qian, S., Eddy, W.F.: An algorithm for isotonic regression on ordered rectangular grids. J. Comput. Graph. Stat. 5, 225–235 (1996)

    MathSciNet  Google Scholar 

  31. Robertson, T., Wright, F.T.: Multiple isotonic median regression. Ann. Stat. 1, 422–432 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  32. Robertson, T., Wright, F.T., Dykstra, R.L.: Order Restricted Statistical Inference. Wiley, New York (1988)

    MATH  Google Scholar 

  33. Saarela, O., Arjas, E.: A method for Bayesian monotonic multiple regression. Scand. J. Stat. 38, 499–513 (2011)

    MATH  MathSciNet  Google Scholar 

  34. Salanti, G., Ulm, K.: Multidimensional isotonic regression and estimation of the threshold value. Discussion paper 234. Institute für Statistik, Ludwig-Maximilians Universität, Munchen (2001)

  35. Sasabuchi, S., Inutsuka, M., Kulatungaz, D.D.S.: A multivariate version of isotonic regression. Biometrika 70, 465–472 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  36. Spouge, J., Wan, H., Wilber, W.J.: Least squares isotonic regression in two dimensions. J. Optim. Theory Appl. 117, 585–605 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stout, Q.F.: Strict L isotonic regression. J. Optim. Theory Appl. 152, 121–135 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Stout, Q.F.: Weighted L isotonic regression, submitted (2012). Available at. www.eecs.umich.edu/~qstout/pap/LinfinityIso.pdf

  39. Stout, Q.F.: Isotonic regression via partitioning. Algorithmica 66, 93–112 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Sysoev, O., Burdakov, O., Grimvall, A.: A segmentation-based algorithm for large-scale partially ordered monotonic regression. Comput. Stat. Data Anal. 55, 2463–2476 (2011)

    Article  MathSciNet  Google Scholar 

  41. Ubhaya, V.A.: Isotone optimization, I, II. J. Approx. Theory 12, 146–159, 315–331 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  42. Velikova, M., Daniels, H.: Monotone Prediction Models in Data Mining. VDM Verlag (2008)

Download references

Acknowledgements

Research partially supported by NSF grant CDI-1027192, DOE grant DE-FC52-08NA28616 and King Abdulaziz University. The author thanks Günter Rote for pointing out the paper by Gudmundsson et al. [15], and the reviewer for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin F. Stout.

Appendix:  Optimal Size of Order-Embeddings

Appendix:  Optimal Size of Order-Embeddings

For points in 2-dimensional space the condensed rendezvous dag has Θ(nlogn) edges, and here we show that there are sets of points in 2-space for which Ω(nlogn) edges are needed. One example is the bit-reversal permutation: given integer b>0, let V be the set of 2-dimensional points {(i b i b−1i 1,i 1 i 2i b ):i j ∈{0,1}}, i.e., a point is in V if its b-bit 2nd coordinate, in binary, is the reversal of its 1st coordinate.

Proposition 8

Let V be the b-bit bit-reversal permutation, ordered by 2-dimensional ordering. Then for any dag G, if there is an order-embedding of V into G then G has at least \(\frac{1}{2}|V| \log_{2} |V|\) edges.

Proof

Note that G is not restricted to 2-dimensional ordering.

To prove this, let G=(V′,E′) be a dag and π be an order-embedding of V into G. Let k r denote the bit reversal of k. Then V={p(i):0≤in−1}, where p(i) is the 2-dimensional point (i r,i) and n=2b. Note that p(0),p(1),…,p(n−1) have been ordered by their second coordinate. Let V 0={p(2i):0≤i<n/2} and V 1={p(2i+1):0≤i<n/2}, i.e., V x is those points where the highest bit of their first coordinate is x. Elements of V 0 can precede elements of V 1, but not vice versa. In particular, for any i, j, where 0≤i,jn−1, then p(i)≺p(j) if and only if i<j and either \(p(j) \not\in V_{0}\) or \(p(i) \not\in V_{1}\).

Vertex p(n−2)∈V 0 is dominated by p(n−1)∈V 1, and thus there is a path in G from π(p(n−2)) to π(p(n−1)). Let e(1) denote the first edge on this path. Since no other point dominates p(n−2), removing e(1) from E′ does not alter the fact that π preserves the 2-dimensional ordering, with the possible exception that there may be elements p(j)∈V 0 for which p(j)≺p(n−1) but π(p(j)) no longer precedes π(p(n−1)).

Let U i ={p(n−2j+1):1≤ji}⊂V 1. By induction, for 1≤i<n/2, suppose one has found i edges E i ={e(j):1≤ji} such that, for any p,qV, if \(p \not\in V_{0}\) or \(q \not\in U_{i}\), then pq in V if and only if π(p)≺π(q) in (V′,E′−E i ). To find edge e(i+1), since p(n−2i−2)∈V 0 is dominated by p(n−2i−1)∈V 1U i , there is a path τ in (V′,E′−E i ) from π(p(n−2i−2)) to π(p(n−2i−1)). Let vV′ be the first vertex on τ such that there is no path from v to any vertex in π(V 0). Since the endpoint π(p(n−2i−1)) has this property v must exist, and it cannot be π(p(n−2i−2)) since there must be a path from it to π(p(n−2i))∈π(V 0). Let e(i+1) denote the incoming edge at v in τ. This edge cannot be on any path leading to π(V 1U i+1) since otherwise π(p(n−2i−2)) would be dominated by such a point, violating the order-embedding property because p(n−2i−2) is not dominated by any point in V 1U i+1. Similarly, it cannot be on any path that starts in π(V 1) since otherwise such a point would have a path to the predecessor of v in τ, and hence would have a path to the point π(p(n−2i))∈π(V 0), which is impossible. Therefore e(i+1) is only on paths from π(V 0) to π(U i+1). Thus E i+1=E i +e(i+1) has the requisite properties for the induction.

Once E n/2 has been determined, let E″=E′−E n/2, i.e., n/2 edges have been removed. The dag G″=(V′,E″) has the property that if pq and p,qV 0 or p,qV 1, then π(p)≺π(q) in G″. If we further remove all edges in E″ which are not on any path from π(p) to π(q) where p,qV 0 or p,qV 1, then the resulting dag has the same property. Further, it has connected components, one of which contains π(V 0) and another of which contains π(V 0). V 0 and V 1 are both isomorphic to the b−1 bit-reversal permutation, and thus we can recursively remove edges from their components. The process can be repeated b times, removing n/2 edges at each stage, so there must be at least \(bn/2 = \frac{1}{2}|V| \log_{2} |V|\) edges. □

A somewhat similar proof appears in [15] when there is no partial ordering on the points and G is required to be a Manhattan network, i.e., the endpoints of edges differ in exactly one coordinate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stout, Q.F. Isotonic Regression for Multiple Independent Variables. Algorithmica 71, 450–470 (2015). https://doi.org/10.1007/s00453-013-9814-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9814-z

Keywords

Navigation