Skip to main content

Advertisement

Log in

EVA: Laparoscopic Instrument Tracking Based on Endoscopic Video Analysis for Psychomotor Skills Assessment

  • New Technology
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Introduction

The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup.

Methods

EVA makes use of an algorithm that employs information of the laparoscopic instrument’s shaft edges in the image, the instrument’s insertion point, and the camera’s optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance.

Results

Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA.

Conclusions

EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cuschieri A (2005) Laparoscopic surgery: current status, issues and future developments. Surgeon 3:125–130

    Article  PubMed  CAS  Google Scholar 

  2. Aggarwal R, Moorthy K, Darzi A (2004) Laparoscopic skills training and assessment. Br J Surg 91:1549–1558

    Article  PubMed  CAS  Google Scholar 

  3. Harden RM, Stevenson M, Downie WW, Wilson GM (1975) Assessment of clinical competence using objective structured examination. Br Med J 1:447–451

    Article  PubMed  CAS  Google Scholar 

  4. van Sickle KR, Ritter EM, McClusky DA 3rd, Lederman A, Baghai M, Gallagher AG, Smith CD (2007) Attempted establishment of proficiency levels for laparoscopic performance on a national scale using simulation: the results from the 2004 SAGES minimally invasive surgical trainer-virtual reality (MIST-VR) learning center study. Surg Endosc 21:5–10

    Article  PubMed  Google Scholar 

  5. Usón J, Sánchez-Margallo FM, Pascual S, Climent S (2010) Formación en Cirugía Laparoscópica Paso a Paso, 4th edn. Minimally Invasive Surgery Centre Jesús Usón, Cáceres

    Google Scholar 

  6. Sánchez-González P, Oropesa I, Romero V, Fernández A, Albacete A, Asenjo E, Noguera J, Sánchez-Margallo FM, Burgos D, Gómez EJ (2010) TELMA: technology enhanced learning environment for minimally Invasive surgery. Procedia Comp Sci 3:316–321

    Article  Google Scholar 

  7. Oropesa I, Sánchez-González P, Lamata P, Chmarra MK, Pagador JB, Sánchez-Margallo JA, Sánchez-Margallo FM, Gómez EJ (2011) Methods and tools for objective assessment of psychomotor skills in laparoscopic surgery. J Surg Res 171:e81–e95. doi:10.1016/j.jss.2011.06.034

    Article  PubMed  Google Scholar 

  8. Fried GM, Feldman LS (2008) Objective assessment of technical performance. World J Surg 32:156–160

    Article  PubMed  Google Scholar 

  9. Chmarra MK, Bakker NH, Grimbergen CA, Dankelman J (2006) TrEndo, a device for tracking minimally invasive surgical instruments in training setups. Sens Actuat A-Physical 126:328–334

    Article  Google Scholar 

  10. Rosen J, Brown JD, Barreca M, Chang L, Hannaford B, Sinanan M (2002) The Blue DRAGON–a system for monitoring the kinematics and the dynamics of endoscopic tools in minimally invasive surgery for objective laparoscopic skill assessment. Stud Health Technol Inform 85:412–418

    PubMed  Google Scholar 

  11. Sokollik C, Gross J, Buess G (2004) New model for skills assessment and training progress in minimally invasive surgery. Surg Endosc 18:495–500

    Article  PubMed  CAS  Google Scholar 

  12. Datta V, Mackay S, Mandalia M, Darzi A (2001) The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J Am Coll Surg 193:479–485

    Article  PubMed  CAS  Google Scholar 

  13. Peters TM (2006) Image-guidance for surgical procedures. Phys Med Biol 51:R505–R540. doi:10.1088/0031-9155/51/14/R01

    Article  PubMed  Google Scholar 

  14. Sánchez-González P, Cano AM, Oropesa I, Sánchez-Margallo FM, del Pozo F, Lamata P, Gómez EJ (2011) Laparoscopic video analysis for training and image guided surgery. Minim Invasive Ther Allied Technol. doi:10.3109/13645706.2010.541921

    Google Scholar 

  15. Sánchez-Margallo JA, Sánchez-Margallo FM, Pagador JB, Gómez-Aguilera EJ, Sánchez-González P, Usón J, Moreno J (2010) Video-based assistance system for training in minimally invasive surgery. Minim Invasive Ther Allied Technol 20:197–205

    Article  PubMed  Google Scholar 

  16. van Sickle KR, McClusky DA 3rd, Gallagher AG, Smith CD (2005) Construct validation of the ProMIS simulator using a novel laparoscopic suturing task. Surg Endosc 19:1227–1231

    Article  PubMed  Google Scholar 

  17. Pellen MG, Horgan LF, Barton JR, Attwood SE (2009) Construct validity of the ProMIS laparoscopic simulator. Surg Endosc 23:130–139

    Article  PubMed  Google Scholar 

  18. Ritter EM, Kindelan TW, Michael C, Pimentel EA, Bowyer MW (2007) Concurrent validity of augmented reality metrics applied to the fundamentals of laparoscopic surgery (FLS). Surg Endosc 21:1441–1445

    Article  PubMed  CAS  Google Scholar 

  19. Krupa A, Gangloff J, Doignon C, de Mathelin MF, Morel G, Leroy J, Soler L, Marescaux J (2003) Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual “servoing.”. IEEE T Robotic Autom 9:842–853

    Article  Google Scholar 

  20. Allen BF, Kasper F, Nataneli G, Dutson E, Faloutsos P (2011) Visual tracking of laparoscopic instruments in standard training environments. Stud Health Technol Inform 163:11–17

    PubMed  Google Scholar 

  21. Speidel S, Delles M, Gutt C, Dillmann R (2006) Tracking of instruments in minimally invasive surgery for surgical skill analysis. Med Imag Augment Real 4091:148–155

    Article  Google Scholar 

  22. Tonet O, Ramesh TU, Megali G, Dario P (2006) Tracking endoscopic instruments without localizer: image analysis-based approach. Stud Health Technol Inform 119:544–549

    PubMed  Google Scholar 

  23. Bouarfa L, Akman O, Schneider A, Jonker PP, Dankelman J (2011) In vivo real-time tracking of surgical instruments in endoscopic video. Minim Invasive Ther Allied Technol DOI: 10.3109/13645706.2011.580764

  24. Voros S, Long J, Cinquin P (2006) Automatic localization of laparoscopic instruments for the visual servoing of an endoscopic camera holder. Med Image Comput Comput Assist Interv 4190:535–542

    Google Scholar 

  25. Climent J, Marés P (2004) Automatic instrument localization in laparoscopic surgery. Electron Lett Comput Vis Image Anal 4:21–31

    Google Scholar 

  26. McKenna SJ, Charif HN, Frank T (2005) Towards video understanding for laparoscopic surgery: instrument tracking. Image and Vision Computing New Zealand Conference, Dunedin, New Zealand

    Google Scholar 

  27. Doignon C, Nageotte F, Maurin B, Krupa A (2008) Pose estimation and feature tracking for robot assisted surgery with medical imaging. In: Kragic D, Kyrik V (eds) Unifying perspectives in computational and robot vision, vol 8. Springer, New York, pp 79–101

    Chapter  Google Scholar 

  28. Cano AM, Lamata P, Gayá F, del Pozo F, Gómez EJ (2006) New methods for video-based tracking of laparoscopic tools. In: Harders M, Székely G (eds) ISBMS 2006, LNCS, vol 4072. Springer, Heidelberg, pp 142–149

    Google Scholar 

  29. Cano AM, Sánchez-González P, Sánchez-Margallo FM, Oropesa I, del Pozo F, Gómez EJ (2008) Video-endoscopic image analysis for 3D reconstruction of the surgical scene. In: Sloten JV, Verdonck P, Nyssen M, Haueisen J (eds) 4th European Conference of the International Federation for Medical and Biological Engineering, IFMBE Proceedings vol 22. pp 923–926

  30. Wolf R, Duchateau J, Cinquin P, Voros S (2011) 3D tracking of laparoscopic instruments using statistical and geometric modeling. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention – MICCAI 2011, LNCS, vol 6891. pp 203–210

  31. Satava RM, Cuschieri A, Hamdorf J (2003) Metrics for objective assessment. Surg Endosc 17:220–226

    Article  PubMed  CAS  Google Scholar 

  32. Chmarra MK, Jansen FW, Grimbergen CA, Dankelman J (2008) Retracting and seeking movements during laparoscopic goal-oriented movements. Is the shortest path length optimal? Surg Endosc 22:943–949

    Article  PubMed  Google Scholar 

  33. Chmarra MK, Dankelman J, van den Dobbelsteen JJ, Jansen FW (2008) Force feedback and basic laparoscopic skills. Surg Endosc 22:2140–2148

    Article  PubMed  Google Scholar 

  34. Chmarra MK, Klein S, de Winter JCF, Jansen FW, Dankelman J (2010) Objective classification of residents based on their psychomotor laparoscopic skills. Surg Endosc 24:1031–1039

    Article  PubMed  Google Scholar 

  35. Hiemstra E, Chmarra MK, Dankelman J, Jansen FW (2011) Intracorporeal suturing: economy of instrument movements using a box trainer model. J Minim Invasive Gynecol 18:494–499

    Article  PubMed  Google Scholar 

  36. Cano AM, Vara I, Sánchez-González P, Gómez EJ (2008) Laparoscopic image analysis for automatic tracking of surgical tools. In: Proceedings of computer assisted radiology and surgery (CARS 2008), vol 3. p S279

  37. Brown DC (1971) Close-range camera calibration. Photogramm Eng 37:855–866

    Google Scholar 

  38. Bouguet JY (2010) Camera Calibration Toolbox for Matlab - Calibrating a stereo system, stereo image rectification and 3D stereo triangulation (2010). Pasadena, CA (USA): California Institute of Technology; 2010 Available at: http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example5.html. Accessed 27 Oct 2011

  39. Gonzales RC, Woods RE (2002) Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  40. Jain AK, Dubes RC (1981) Algorithms for clustering data. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  41. Aggarwal R, Grantcharov T, Moorthy K, Milland T, Papasavas P, Dosis A, Bello F, Darzi A (2007) An evaluation of the feasibility, validity, and reliability of laparoscopic skills assessment in the operating room. Ann Surg 245:992–999

    Article  PubMed  Google Scholar 

  42. Maithel S, Sierra R, Korndorffer J, Neumann P, Dawson S, Callery M, Jones D, Scott D (2006) Construct and face validity of MIST-VR, Endotower, and CELTS. Surg Endosc 20:104–112

    Article  PubMed  CAS  Google Scholar 

  43. Chmarra MK, Kolkman W, Jansen FW, Grimbergen CA, Dankelman J (2007) The influence of experience and camera holding on laparoscopic instrument movements with the TrEndo tracking system. Surg Endosc 21:2069–2075

    Article  PubMed  CAS  Google Scholar 

  44. Yamaguchi S, Konishi K, Yasunaga T, Yoshida D, Kinjo N, Kobayashi K, Ieiri S, Okazaki K, Nakashima H, Tanoue K (2007) Construct validity for eye–hand coordination skill on a virtual reality laparoscopic surgical simulator. Surg Endosc 21:2253–2257

    Article  PubMed  Google Scholar 

  45. Verdaasdonk EGG, Stassen LPS, Schijven MP, Dankelman J (2007) Construct validity and assessment of the learning curve for the SIMENDO endoscopic simulator. Surg Endosc 21:1406–1412

    Article  PubMed  CAS  Google Scholar 

  46. Larsen CR, Grantcharov T, Aggarwal R, Tully A, Sørensen JL, Dalsgaard T, Ottesen B (2006) Objective assessment of gynecologic laparoscopic skills using the LapSimGyn virtual reality simulator. Surg Endosc 20:1460–1466

    Article  PubMed  CAS  Google Scholar 

  47. Stylopoulos N, Cotin S, Maithel S, Ottensmeyer M, Jackson P, Bardsley R, Neumann P, Rattner D, Dawson S (2004) Computer-enhanced laparoscopic training system (CELTS): bridging the gap. Surg Endosc 18:782–789

    Article  PubMed  CAS  Google Scholar 

  48. Egi H, Okajima M, Yoshimitsu M, Ikeda S, Miyata Y, Masugami H, Kawahara T, Kurita Y, Kaneko M, Asahara T (2008) Objective assessment of endoscopic surgical skills by analyzing direction-dependent dexterity using the hiroshima university endoscopic surgical assessment device (HUESAD). Surg Today 38:705–710

    Article  PubMed  Google Scholar 

  49. Megali G, Sinigaglia S, Tonet O, Cavallo F, Dario P (2006) Understanding expertise in surgical gesture by means of Hidden Markov Models. In: Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron 2006:625–630

  50. Bell JA (1998) Royal air force selection procedures. Ann R Coll Surg Engl 70:270–275

    Google Scholar 

  51. Van de Loo RPJM (1998) Selection of surgical trainees in The Netherlands. Ann R Coll Surg Engl 70:277–279

    Google Scholar 

  52. Gilligan JH, Treasure T, Watts C (1996) Incorporating psychometric measures in selecting and developing surgeons. J Manag Med 10:5–16

    Article  PubMed  CAS  Google Scholar 

  53. Lamata P, Gomez EJ, Bello F, Kneebone RL, Aggarwal R, Lamata F (2006) Conceptual framework for laparoscopic VR simulators. IEEE Comput Graph Appl 26:69–79

    Article  PubMed  Google Scholar 

  54. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME, J Basic Eng 82:35–45

    Article  Google Scholar 

  55. Sinha SN, Frahm JM, Pollefeys M, Gene Y (2011) Feature tracking and matching in video using programmable graphics hardware. Mach Vision Appl 22:207–217

    Article  Google Scholar 

  56. Rosen J, Brown JD, Chang L, Sinanan MN, Hannaford B (2006) Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Trans Biomed Eng 53:399–413

    Article  PubMed  Google Scholar 

  57. Bann SD, Khan MS, Darzi AW (2003) Measurement of surgical dexterity using motion analysis of simple bench tasks. World J Surg 27:390–394

    Article  PubMed  Google Scholar 

  58. Sherman V, Feldman L, Stanbridge D, Kazmi R, Fried G (2005) Assessing the learning curve for the acquisition of laparoscopic skills on a virtual reality simulator. Surg Endosc 19:678–682

    Article  PubMed  CAS  Google Scholar 

  59. van Dongen KW, Tournoij E, van der Zee DC, Schijven MP, Broeders IAMJ (2007) Construct validity of the LapSim: can the LapSim virtual reality simulator distinguish between novices and experts? Surg Endosc 21:1413–1417

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all surgeons, residents, and medical students, who kindly volunteered and participated in the experimental trials, and staff of the skills laboratory of LUMC for providing the available working space.

Disclosures

Mr. Ignacio Oropesa receives funding from the FPU Program of the Spanish Ministry of Science and Innovation [AP2007-00465]. Dr. Patricia Sánchez-González, Dr. Francisco M. Sánchez-Margallo, and Prof. Enrique J. Gómez participate under funding of the CIBER-BBN research project THEMIS. Dr. Magdalena K. Chmarra participates under the Marie Curie ITN project IIIOS (Integrated Interventional Imaging Operating System) project 238802. Dr. Pablo Lamata, Mr. Álvaro Fernández, Mr. Juan A. Sánchez-Margallo, Dr. Frank Willem Jansen, and Prof. Jenny Dankelman have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Oropesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oropesa, I., Sánchez-González, P., Chmarra, M.K. et al. EVA: Laparoscopic Instrument Tracking Based on Endoscopic Video Analysis for Psychomotor Skills Assessment. Surg Endosc 27, 1029–1039 (2013). https://doi.org/10.1007/s00464-012-2513-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-012-2513-z

Keywords

Navigation