Skip to main content
Log in

Toward increased autonomy in the surgical OR: needs, requests, and expectations

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

The current trend in surgery toward further trauma reduction inevitably leads to increased technological complexity. It must be assumed that this situation will not stay under the sole control of surgeons; mechanical systems will assist them. Certain segments of the work flow will likely have to be taken over by a machine in an automatized or autonomous mode.

Methods

In addition to the analysis of our own surgical practice, a literature search of the Medline database was performed to identify important aspects, methods, and technologies for increased operating room (OR) autonomy.

Results

Robotic surgical systems can help to increase OR autonomy by camera control, application of intelligent instruments, and even accomplishment of automated surgical procedures. However, the important step from simple task execution to autonomous decision making is difficult to realize. Another important aspect is the adaption of the general technical OR environment. This includes adaptive OR setting and context-adaptive interfaces, automated tool arrangement, and optimal visualization. Finally, integration of peri- and intraoperative data consisting of electronic patient record, OR documentation and logistics, medical imaging, and patient surveillance data could increase autonomy.

Conclusions

To gain autonomy in the OR, a variety of assistance systems and methodologies need to be incorporated that endorse the surgeon autonomously as a first step toward the vision of cognitive surgery. Thus, we require establishment of model-based surgery and integration of procedural tasks. Structured knowledge is therefore indispensable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Herron DM, Marohn M (2008) A consensus document on robotic surgery. Surg Endosc 22:313–325

    Article  PubMed  CAS  Google Scholar 

  2. Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM (2011) Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot 7:375–392

    Article  PubMed  CAS  Google Scholar 

  3. Gopel T, Hartl F, Schneider A, Buss M, Feussner H (2011) Automation of a suturing device for minimally invasive surgery. Surg Endosc 25:2100–2104

    Article  PubMed  Google Scholar 

  4. Kahler G, Bulian D, Collet P, Eickhoff A, Feussner H, Fritscher-Ravens A, Fuchs K, Hochberger J, Kratt T, Meier PN, Meining A, Schafer H, Wilhelm D (2011) Endoscopic surgery through natural orifices (NOTES) in Germany: status report, 2010. Z Gastroenterol 49:543–549

    Article  PubMed  CAS  Google Scholar 

  5. Kranzfelder M, Schneider A, Gillen S, Feussner H (2011) New technologies for information retrieval to achieve situational awareness and higher patient safety in the surgical operating room: the MRI institutional approach and review of the literature. Surg Endosc 25:696–705

    Article  PubMed  Google Scholar 

  6. Can S, Fiolka A, Mayer H, Knoll A, Schneider A, Wilhelm D, Meining A, Feussner H (2008) The mechatronic support system “HVSPS” and the way to NOTES. Minim Invasive Ther Allied Technol 17:341–345

    Article  PubMed  Google Scholar 

  7. Gillen S, Wilhelm D, Meining A, Fiolka A, Doundoulakis E, Schneider A, von Delius S, Friess H, Feussner H (2009) The “ELITE” model: construct validation of a new training system for natural orifice transluminal endoscopic surgery (NOTES). Endoscopy 41:395–399

    Article  PubMed  CAS  Google Scholar 

  8. Wolf A, Shoham M (2009) Medical automation and robotics. Springer, Berlin

    Google Scholar 

  9. Huang HM (2006) The autonomy levels for unmanned systems (ALFUS) framework: interim results. Presented at: Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg, MD

  10. Jaspers JE, Breedveld P, Herder JL, Grimbergen CA (2004) Camera and instrument holders and their clinical value in minimally invasive surgery. Surg Laparosc Endosc Percutan Tech 14:145–152

    Article  PubMed  Google Scholar 

  11. Kristin J, Geiger R, Knapp FB, Schipper J, Klenzner T (2011) Use of a mechatronic robotic camera holding system in head and neck surgery. HNO 59:575–581

    Article  PubMed  CAS  Google Scholar 

  12. Nishikawa A, Nakagoe H, Taniguchi K, Yamada Y, Sekimoto M, Takiguchi S, Monden M, Miyazaki F (2008) How does the camera assistant decide the zooming ratio of laparoscopic images? Analysis and implementation. Med Image Comput Comput Assist Interv 11:611–618

    PubMed  Google Scholar 

  13. Groeger M, Arbter K, Hirzinger G (2011) Motion tracking for minimally invasive robotic surgery. Institute of Robotics and Mechatronics, German Aerospace Center, Cologne

    Google Scholar 

  14. Omote K, Feussner H, Ungeheuer A, Arbter K, Wei GQ, Siewert JR, Hirzinger G (1999) Self-guided robotic camera control for laparoscopic surgery compared with human camera control. Am J Surg 177:321–324

    Article  PubMed  CAS  Google Scholar 

  15. Kranzfelder M, Schneider A, Blahusch G, Schaaf H, Feussner H (2009) Feasibility of opto-electronic surgical instrument identification. Minim Invasive Ther Allied Technol 18:253–258

    Article  PubMed  Google Scholar 

  16. Beller S, Eulenstein S, Lange T, Hunerbein M, Schlag PM (2009) Upgrade of an optical navigation system with a permanent electromagnetic position control: a first step towards “navigated control” for liver surgery. J Hepatobiliary Pancreat Surg 16:165–170

    Article  PubMed  Google Scholar 

  17. Rantanen V, Vanhala T, Tuisku O, Niemenlehto PH, Verho J, Surakka V, Juhola M, Lekkala J (2011) A wearable, wireless gaze tracker with integrated selection command source for human–computer interaction. IEEE Trans Inf Technol Biomed 15:795–801

    Article  PubMed  Google Scholar 

  18. Houston K, Sieber A, Eder C, Tonet O, Menciassi A, Dario P (2007) Novel haptic tool and input device for real time bilateral biomanipulation addressing endoscopic surgery. Conf Proc IEEE Eng Med Biol Soc 2007:198–201

    PubMed  Google Scholar 

  19. Chiang MH, Lin HT, Hou CL (2011) Development of a stereo vision measurement system for a 3D three-axial pneumatic parallel mechanism robot arm. Sensors (Basel) 11:2257–2281

    Article  Google Scholar 

  20. Hubens G, Coveliers H, Balliu L, Ruppert M, Vaneerdeweg W (2003) A performance study comparing manual and robotically assisted laparoscopic surgery using the Da Vinci system. Surg Endosc 17:1595–1599

    Article  PubMed  CAS  Google Scholar 

  21. Kenngott HG, Muller-Stich BP, Reiter MA, Rassweiler J, Gutt CN (2008) Robotic suturing: technique and benefit in advanced laparoscopic surgery. Minim Invasive Ther Allied Technol 17:160–167

    Article  PubMed  Google Scholar 

  22. Mayer H (2008) Human–machine skill transfer in robot assisted, minimally invasive surgery. PhD thesis, Technische Universität München, München

  23. Padoy N, Hager GD (2011) Human–machine collaborative surgery using learned models. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp 5285–5292

  24. Chandra V, Nehra D, Parent R, Woo R, Reyes R, Hernandez-Boussard T, Dutta S (2010) A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery 147:830–839

    Article  PubMed  Google Scholar 

  25. Supe AN, Kulkarni GV, Supe PA (2010) Ergonomics in laparoscopic surgery. J Minim Access Surg 6:31–36

    Article  PubMed  Google Scholar 

  26. Bowa Medical (2012) http://www.bowa-medical.com

  27. Miller DJ, Nelson CA, Oleynikov D, Jones DD (2008) Pre-operative ordering of minimally invasive surgical tools: a fuzzy inference system approach. Artif Intell Med 43:35–45

    Article  PubMed  Google Scholar 

  28. Holler K, Schneider A, Jahn J, Gutierrez J, Wittenberg T, Feussner H, Hornegger J (2010) Spatial orientation in translumenal surgery. Minim Invasive Ther Allied Technol 19:262–273

    Article  PubMed  Google Scholar 

  29. Nakamoto M, Ukimura O, Faber K, Gill IS (2012) Current progress on augmented reality visualization in endoscopic surgery. Curr Opin Urol 22:121–126

    Article  PubMed  Google Scholar 

  30. Nicolau S, Soler L, Mutter D, Marescaux J (2011) Augmented reality in laparoscopic surgical oncology. Surg Oncol 20:189–201

    Article  PubMed  Google Scholar 

  31. Rosenberg LB (1993) Virtual fixtures: perceptual tools for telerobotic manipulation. Presented at: Virtual Reality Annual International Symposium IEEE, Seattle, WA, pp 76–82

  32. Dressler CR, Fischer M, Burgert O, Strauss G (2012) Evaluation of a context sensitive system for intra-operative usage of the electronic patient record. Laryngorhinootologie 91:368–374

    Article  PubMed  CAS  Google Scholar 

  33. Ebert LC, Hatch G, Ampanozi G, Thali MJ, Ross S (2012) You can’t touch this: touch-free navigation through radiological images. Surg Innov 19:301–307

    Article  PubMed  Google Scholar 

  34. Wachs JP, Stern HI, Edan Y, Gillam M, Handler J, Feied C, Smith M (2008) A gesture-based tool for sterile browsing of radiology images. J Am Med Inform Assoc 15:321–323

    Article  PubMed  Google Scholar 

  35. Nathan CO, Chakradeo V, Malhotra K, D’Agostino H, Patwardhan R (2006) The voice-controlled robotic assist scope holder AESOP for the endoscopic approach to the sella. Skull Base 16:123–131

    Article  PubMed  Google Scholar 

  36. El-Shallaly GE, Mohammed B, Muhtaseb MS, Hamouda AH, Nassar AH (2005) Voice recognition interfaces (VRI) optimize the utilization of theatre staff and time during laparoscopic cholecystectomy. Minim Invasive Ther Allied Technol 14:369–371

    Article  PubMed  CAS  Google Scholar 

  37. Hoffer DN, Finelli A, Chow R, Liu J, Truong T, Lane K, Punnen S, Knox JJ, Legere L, Kurban G, Gallie B, Jewett MA (2012) Structured electronic operative reporting: comparison with dictation in kidney cancer surgery. Int J Med Inform 81:182–191

    Article  PubMed  Google Scholar 

  38. Chau A, Ehrenfeld JM (2011) Using real-time clinical decision support to improve performance on perioperative quality and process measures. Anesthesiol Clin 29:57–69

    Article  PubMed  Google Scholar 

  39. Liberman D, Trinh QD, Jeldres C, Zorn KC (2012) Is robotic surgery cost-effective: yes. Curr Opin Urol 22:61–65

    Article  PubMed  Google Scholar 

  40. Lotan Y (2012) Is robotic surgery cost-effective: no. Curr Opin Urol 22:66–69

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by DFG project “Single-Port-Technologie für gastroenterologische und viszeralchirurgische endoskopische Interventionen” (FOR 1321).

Disclosures

Dr. med. Kranzfelder, Dipl. Inf. Staub, Dipl. Ing. Fiolka, Dr. Ing. Schneider, PD Dr. med. Gillen, Dr. med. Wilhelm, Prof. Dr. med. Friess, Prof. Dr. Ing. Knoll and Prof. Dr. med. Feussner have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kranzfelder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kranzfelder, M., Staub, C., Fiolka, A. et al. Toward increased autonomy in the surgical OR: needs, requests, and expectations. Surg Endosc 27, 1681–1688 (2013). https://doi.org/10.1007/s00464-012-2656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-012-2656-y

Keywords

Navigation