Skip to main content
Log in

Current state of micro-robots/devices as substitutes for screening colonoscopy: assessment based on technology readiness levels

  • Review
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Previous reports have described several candidates, which have the potential to replace colonoscopy, but to date, there is still no device capable of fully replacing flexible colonoscopy in the management of colonic disorders and for mass adult population screening for asymptomatic colorectal cancer.

Materials and methods

NASA developed the TRL methodology to describe and define the stages of development before use and marketing of any device. The definitions of the TRLS used in the present review are those formulated by The US Department of Defense Technology Readiness Assessment Guidance” but adapted to micro-robots for colonoscopy. All the devices included are reported in scientific literature. They were identified by a systematic search in Web of Science, PubMed and IEEE Xplore amongst other sources. Devices that clearly lack the potential for full replacement of flexible colonoscopy were excluded.

Assessment of the current situation

The technological salient features of all the devices included for assessment are described briefly, with particular focus on device propulsion. The devices are classified according to the TRL criteria based on the reported information. An analysis is next undertaken of the characteristics and salient features of the devices included in the review: wireless/tethered devices, data storage–transmission and navigation, additional functionality, residual technology challenges and clinical and socio-economical needs.

Conclusions

Few devices currently possess the required functionality and performance to replace the conventional colonoscopy. The requirements, including functionalities which favour the development of a micro-robot platform to replace colonoscopy, are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Website: http://www.capsovision.com/index.php/capsocam.html (accessed on 6 May 2015).

  2. RF systems http://rfsystemlab.com/en/sayaka/ (Accessed on 6 May 2015).

  3. Based on WHO Core medical equipment Tech. rep. Original data: 25000-41000 USD, exchange rate to GBP of 1 September 2014.

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F (2013) F. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase no. 11 [internet]. Technical report, International Agency for Research on Cancer, Lyon, France

  2. Fisher DA, Maple JT, Ben-Menachem T, Cash BD, Decker GA, Early DS, Evans JA, Fanelli RD, Fukami N, Hwang JH, Jain R, Jue TL, Khan KM, Malpas PM, Sharaf RN, Shergill AK, Dominitz JA (2011) Complications of colonoscopy. Gastrointest Endosc 74(4):745–752

    Article  PubMed  Google Scholar 

  3. Baxter NN, Goldwasser MA, Paszat LF, Saskin R, Urbach DR, Rabeneck L (2009) Association of colonoscopy and death from colorectal cancer. Ann Intern Med 150(1):1–8

    Article  PubMed  Google Scholar 

  4. Harewood G (2005) Relationship of colonoscopy completion rates and endoscopist features. Dig Dis Sci 50(1):47–51

    Article  PubMed  Google Scholar 

  5. Hewett DG, Rex DK (2011) Miss rate of right-sided colon examination during colonoscopy defined by retroflexion: an observational study. Gastrointest Endosc 74(2):246–252

    Article  PubMed  Google Scholar 

  6. Brenner H, Chang-Claude J, Seiler CM, Stürmer T, Hoffmeister M (2007) Potential for colorectal cancer prevention of sigmoidoscopy versus colonoscopy: population-based case control study. Cancer Epidemiol Biomark Prev 16(3):494–499. doi:10.1158/1055-9965.epi-06-0460

    Article  Google Scholar 

  7. Tran A, Man Ngor E, Wu BU (2014) Surveillance colonoscopy in elderly patients: a retrospective cohort study. JAMA Intern Med 174(10):1675–1682

    Article  PubMed  Google Scholar 

  8. AXA PPP Healthcare (2014) Attitudes to bowel cancer screening research results. AXA PPP Healthcare

  9. Cheng WB, Moser MA, Kanagaratnam S, Zhang WJ (2012) Overview of upcoming advances in colonoscopy. Dig Endosc 24(1):1–6

    Article  PubMed  Google Scholar 

  10. Cosentino F, Tumino E, Passoni G, Rigante A, Barbera R, Tauro A, Cosentino P (2011) Robotic colonoscopy. In: Colonoscopy. Intech open, pp 291–308

  11. Forgione A (2009) In vivo microrobots for natural orifice transluminal surgery. Current status and future perspectives. Surg Oncol 18(2):121–129

    Article  CAS  PubMed  Google Scholar 

  12. Obstein KL, Valdastri P (2013) Advanced endoscopic technologies for colorectal cancer screening. World J Gastroenterol 19(4):431–439

    Article  PubMed Central  PubMed  Google Scholar 

  13. Patel N, Darzi A, Teare J (2014) The endoscopy evolution: ‘the superscope era’. Frontline Gastroenterol. doi:10.1136/flgastro-2014-100448

    PubMed Central  PubMed  Google Scholar 

  14. Saxena P, Khashab MA (2013) New platforms and devices in colonoscopy. Gastroenterol Clin N Am 42(3):671–688

    Article  Google Scholar 

  15. Valdastri P, Simi M, Webster RJ III (2012) Advanced technologies for gastrointestinal endoscopy. Annu Rev Biomed Eng 14:397–429

    Article  CAS  PubMed  Google Scholar 

  16. Vemulapalli KC, Rex DK (2011) Evolving techniques in colonoscopy. Curr Opin Gastroenterol 27(5):430–438. doi:10.1097/MOG.0b013e328349cfc0

    Article  PubMed  Google Scholar 

  17. Vitiello V, Su-Lin L, Cundy TP, Guang-Zhong Y (2013) Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng 6:111–126

    Article  PubMed  Google Scholar 

  18. ASDRE (2011) Technology Readiness Assessment (TRA) guidance. US Department of Defense, Assistant Secretary of Defense for Research and Engineering

  19. RDDRE (2009) Technology Readiness Assessment (TRA) desk book. US Department of Defense, Research Directorate and Defense Research and Engineering

  20. Breedveld P (2006) Development of a Rolling Stent Endoscope. In: The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics. BioRob 2006, 20–22 February 2006. pp 921–926. doi:10.1109/BIOROB.2006.1639209

  21. Trovato G, Shikanai M, Ukawa G, Kinoshita J, Murai N, Lee JW, Ishii H, Takanishi A, Tanoue K, Ieiri S, Konishi K, Hashizume M (2010) Development of a colon endoscope robot that adjusts its locomotion through the use of reinforcement learning. Int J Comput Assist Radiol Surg 5(4):317–325

    Article  CAS  PubMed  Google Scholar 

  22. Zhou H, Alici G, Than TD, Li W (2013) Modeling and experimental characterization of propulsion of a spiral-type microrobot for medical use in gastrointestinal tract. IEEE Trans Biomed Eng 60(6):1751–1759. doi:10.1109/TBME.2012.2228001

    Article  PubMed  Google Scholar 

  23. Sliker L, Kern M, Schoen J, Rentschler M (2012) Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads. Surg Endosc 26(10):2862–2869

    Article  PubMed  Google Scholar 

  24. Kim D, Lee D, Joe S, Lee BI, Kim B (2014) The flexible caterpillar based robotic colonoscope actuated by an external motor through a flexible shaft. J Mech Sci Technol 28(11):4415–4420. doi:10.1007/s12206-014-1009-2

    Article  Google Scholar 

  25. Rösch T, Adler A, Pohl H, Wettschureck E, Koch M, Wiedenmann B, Hoepffner N (2008) A motor-driven single-use colonoscope controlled with a hand-held device: a feasibility study in volunteers. Gastrointest Endosc 67(7):1139–1146

    Article  PubMed  Google Scholar 

  26. Pourghodrat A, Dehghani H, Nelson CA, Oleynikov D, Dasgupta P, Terry BS (2014) Disposable fluidic self-propelling robot for colonoscopy. J Med Devices 8(3):030931. doi:10.1115/1.4027076

    Article  Google Scholar 

  27. Shike M, Fireman Z, Eliakim R, Segol O, Sloyer A, Cohen LB, Goldfarb-Albak S, Repici A (2008) Sightline ColonoSight system for a disposable, power-assisted, non-fiber-optic colonoscopy (with video). Gastrointest Endosc 68(4):701–710

    Article  PubMed  Google Scholar 

  28. Kim HM, Yang S, Kim J, Park S, Cho JH, Park JY, Kim TS, Yoon E-S, Song SY, Bang S (2010) Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointest Endosc 72(2):381–387

    Article  PubMed  Google Scholar 

  29. Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C-N, Schostek S, Schurr MO (2008) Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointest Endosc 67(7):1153–1158

    Article  PubMed  Google Scholar 

  30. Buselli E, Pensabene V, Castrataro P, Valdastri P, Menciassi A, Dario P (2010) Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy. Meas Sci Technol 21(10):105802. doi:10.1088/0957-0233/21/10/105802

    Article  Google Scholar 

  31. Karagozler ME, Cheung E, Kwon J, Sitti M (2006) Miniature endoscopic capsule robot using biomimetic micro-patterned adhesives. In: Proceedings of the first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, 2006. BioRob 2006, pp 105–111. doi:10.1109/BIOROB.2006.1639068

  32. Dodou D, Girard D, Breedveld P, Wieringa PA (2005) Intestinal locomotion by means of mucoadhesive films. In: Proceedings of the 12th International conference on Advanced robotics, ICAR ‘05. 18–20 July 2005, pp 352–359. doi:10.1109/ICAR.2005.1507435

  33. Chen W, Yan G, Wang Z, Jiang P, Liu H (2014) A wireless capsule robot with spiral legs for human intestine. Int J Med Robotics Comput Assist Surg 10(2):147–161. doi:10.1002/rcs.1520

    Article  CAS  Google Scholar 

  34. Kim L, Tang SC, Yoo SS (2013) Prototype modular capsule robots for capsule endoscopies. In: International conference on control, automation and systems, pp 350–354. doi:10.1109/ICCAS.2013.6703922

  35. Tumino E, Sacco R, Bertini M, Bertoni M, Parisi G, Capria A (2010) Endotics system vs colonoscopy for the detection of polyps. World J gastr 16(43):5452–5456

    Article  Google Scholar 

  36. Sangok S, Onal CD, Kyu-Jin C, Wood RJ, Rus D, Sangbae K (2013) Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans Mechatron 18(5):1485–1497

    Article  Google Scholar 

  37. Chiel HJ, Quinn RD, Beer RD, Mangan ED (2004) Peristaltically self-propelled endoscopic device. US Patent 6764441, 20 July 2004

  38. Yanagida T, Adachi K, Yokojima M, Nakamura T (2012) Development of a peristaltic crawling robot attached to a large intestine endoscope using bellows-type artificial rubber muscles. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), 7–12 October, pp 2935–2940

  39. Dodou D, Breedveld P, Wieringa PA (2006) Stick, unstick, restick sticky films in the colon. Minim Invasive Ther Allied Technol 15(5):286–295. doi:10.1080/13645700600929144

    Article  PubMed  Google Scholar 

  40. Byungkyu K, Sukho P, Chang Yeol J, Yoon S-J (2005) An earthworm-like locomotive mechanism for capsule endoscopes. In: IEEE/RSJ international conference on, Intelligent robots and systems (IROS 2005).2–6 Augest, 2005. pp 2997–3002

  41. Mosse CA, Mills TN, Appleyard MN, Kadirkamanathan SS, Swain CP (2001) Electrical stimulation for propelling endoscopes. Gastrointest Endosc 54(1):79–83

    Article  CAS  PubMed  Google Scholar 

  42. Valdastri P, Ciuti G, Verbeni A, Menciassi A, Dario P, Arezzo A, Morino M (2012) Magnetic air capsule robotic system: proof of concept of a novel approach for painless colonoscopy. Surg Endosc 26(5):1238–1246

    Article  CAS  PubMed  Google Scholar 

  43. Ghanbari A, Chang PH, Nelson BJ, Choi H (2014) Electromagnetic steering of a magnetic cylindrical microrobot using optical feedback closed-loop control. Int J Optomechatron 8(2):129–145

    Article  Google Scholar 

  44. Morita E, Ohtsuka N, Shindo Y, Nouda S, Kuramoto T, Inoue T, Murano M, Umegaki E, Higuchi K (2010) In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video). Gastrointest Endosc 72(4):836–840

    Article  PubMed  Google Scholar 

  45. Qinxue P, Shuxiang G, Desheng L (2009)Development of a paddling type of microrobot for biomedical application. In: IEEE international conference on Robotics and biomimetics (ROBIO), 19–23 December, 2009 pp 888–893

  46. Kosa G, Jakab P, Szekely G, Hata N (2012) MRI driven magnetic microswimmers. Biomed Microdevices 14(1):165–178

    Article  PubMed  Google Scholar 

  47. De Falco I, Tortora G, Dario P, Menciassi A (2014) An integrated system for wireless capsule endoscopy in a liquid-distended stomach. IEEE Trans Biomed Eng 61(3):794–804

    Article  PubMed  Google Scholar 

  48. Vucelic B, Rex D, Pulanic R, Pfefer J, Hrstic I, Levin B, Halpern Z, Arber N (2006) The aer-o-scope: proof of concept of a pneumatic, skill-independent, self-propelling, self-navigating colonoscope. Gastroenterology 130(3):672–677

    Article  PubMed  Google Scholar 

  49. Swain CP, Mosse CA, Bell GD, Mills TN (1998) Endoscopic technology: water jet propelled colonoscopy—a new method of endoscope propulsion. Gastrointest endosc 47(4):AB40. doi:10.1016/S0016-5107(98)70281-0

    Google Scholar 

  50. Adler SN, Metzger YC (2011) PillCam COLON capsule endoscopy: recent advances and new insights. Ther Adv Gastroenterol 4(4):265–268

    Article  Google Scholar 

  51. Woods SP, Constandinou TG (2013) Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations. IEEE Trans Biomed Eng 60(4):945–953. doi:10.1109/TBME.2012.2228647

    Article  PubMed  Google Scholar 

  52. McCaffrey C, Chevalerias O, O’Mathuna C, Twomey K (2008) Swallowable-capsule technology. IEEE Pervasive Comput 7(1):23–29

    Article  Google Scholar 

  53. Chen W, Yan G, Wang Z, Jiang P, Liu H (2014) A wireless capsule robot with spiral legs for human intestine. Int J Med Robotics Comput Assist Surg 10(2):147–161

    Article  CAS  Google Scholar 

  54. Thomann G, Chen G, Redarce T (2008) Design and control of an autonomous bendable tip for colonoscopy. J Micro-Nano Mechatron 4(3):103–114

    Article  Google Scholar 

  55. Chen G, Pham MT, Redarce T (2006) Development and kinematic analysis of a silicone-rubber bending tip for colonoscopy. In: IEEE/RSJ international conference on Intelligent robots and systems 2006, IEEE, pp 168–173

  56. Loeve AJ, Bosma JH, Breedveld P, Dodou D, Dankelman J (2010) Polymer rigidity control for endoscopic shaft-guide ‘Plastolock’—a feasibility study. J Med Devices 4(4):045001. doi:10.1115/1.4002494

    Article  Google Scholar 

  57. Breedveld P, Hirose S (2004) Design of steerable endoscopes to improve the visual perception of depth during laparoscopic surgery. J Mech Des 126(1):2–5. doi:10.1115/1.1637658

    Article  Google Scholar 

  58. Haber G, Whalen LK (2006) A prospective study to evaluate the ShapeLock™ guide to enable complete colonoscopy in previously failed cases. Gastrointest Endosc 63(5):AB226

    Article  Google Scholar 

  59. Striegel J, Jakobs R, Van Dam J, Weickert U, Riemann JF, Eickhoff A (2011) Determining scope position during colonoscopy without use of ionizing radiation or magnetic imaging: the enhanced mapping ability of the NeoGuide Endoscopy System. Surg Endosc 25(2):636–640

    Article  PubMed  Google Scholar 

  60. Natali CD, Beccani M, Obstein KL, Valdastri P (2014) A wireless platform for in vivo measurement of resistance properties of the gastrointestinal tract. Physiol Meas 35(7):1197

    Article  PubMed  Google Scholar 

  61. Kim HM, Kim YJ, Kim HJ, Park S, Park JY, Shin SK, Cheon JH, Lee SK, Lee YC, Park SW, Bang S, Song SY (2010) A pilot study of sequential capsule endoscopy using MiroCam and PillCam SB devices with different transmission technologies. Gut Liver 4(2):192–200

    Article  PubMed Central  PubMed  Google Scholar 

  62. Mylonaki M, Fritscher-Ravens A, Swain P (2003) Wireless capsule endoscopy: a comparison with push enteroscopy in patients with gastroscopy and colonoscopy negative gastrointestinal bleeding. Gut 52(8):1122–1126. doi:10.1136/gut.52.8.1122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Rokkas T, Papaxoinis K, Triantafyllou K, Ladas SD (2010) A meta-analysis evaluating the accuracy of colon capsule endoscopy in detecting colon polyps. Gastrointest Endosc 71(4):792–798

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Research Council (ERC) Grant: CODIR: colonic disease investigation by robotic hydro-colonoscopy (ERC-AG-268519) to Prof. A. Cuschieri (University of Dundee) and Prof Anne Neville (University of Leeds).

Disclosures

Silvia C. Tapia-Siles, Stuart Coleman and Alfred Cuschieri have no conflict of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Cuschieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia-Siles, S.C., Coleman, S. & Cuschieri, A. Current state of micro-robots/devices as substitutes for screening colonoscopy: assessment based on technology readiness levels. Surg Endosc 30, 404–413 (2016). https://doi.org/10.1007/s00464-015-4263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-015-4263-1

Keywords

Navigation