Skip to main content
Log in

A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An effective multiscale treatment of turbulent reacting flows is presented with the use of a stabilized finite element formulation. The method proposed is developed based on the streamline-upwind/Petrov–Galerkin (SUPG) formulation, and includes discontinuity capturing in the form of a new generation “DRD” method, namely the “DRDJ” technique. The stabilized formulation is applied to finite-rate chemistry modelling based on mixture-fraction approaches with the so-called presumed-PDF technique. The turbulent combustion process is simulated for an aero-engine combustor configuration of RQL concept in non-premixed flame regime. The comparative analysis of the temperature and velocity fields demonstrate that the proposed SUPG+DRDJ formulation outperforms the stand-alone SUPG method. The improved accuracy is demonstrated in terms of the combustor overall performance, and the mechanisms involved in the distribution of the numerical diffusivity are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riley J (2006) Review of large Eddy Simulation of non-premixed turbulent combustion. J Fluid Eng 128: 209–215

    Article  Google Scholar 

  2. Corsini A, Rispoli F, Santoriello A et al (2004) A new stabilized finite element method for advection–diffusion reaction equations using quadratic elements. In: Lajos T (eds) Modelling fluid flow. Springer, Berlin

    Google Scholar 

  3. Corsini A, Rispoli F, Santoriello A (2005) A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput Method Appl M 194: 4797–4823

    Article  MATH  MathSciNet  Google Scholar 

  4. Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38: 356–364

    Article  MATH  MathSciNet  Google Scholar 

  5. Corsini A, Menichini F, Rispoli F, Santoriello A, Tezduyar TE (2009) A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms. J Appl Mech 76: 021211

    Article  Google Scholar 

  6. Dubois T, Jauberteau F, Temam R (1993) Solution of the incompressible Navier–Stokes equations by the nonlinear galerkin method. J Sci Comput 8: 167–194

    Article  MATH  MathSciNet  Google Scholar 

  7. Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Visual Sci 3: 47–59

    Article  MATH  Google Scholar 

  8. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Method Appl M 197: 173–201

    Article  MATH  MathSciNet  Google Scholar 

  9. Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the Discontinuity-Capturing Directional Dissipation (DCDD). Comput Fluids 36: 121–126

    Article  MATH  Google Scholar 

  10. Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection–diffusion reaction equations. Comput Method Appl M 59: 307–325

    Article  MATH  Google Scholar 

  11. Tezduyar TE, Park YJ, Deans HA (1987) Finite element procedures for time-dependent convection–diffusion reaction systems. Int J Numer Meth Fl 7: 1013–1033

    Article  MATH  Google Scholar 

  12. Hauke G, Valino L (2004) Computing reactive flows with a field Monte Carlo formulation and multi-scale methods. Comput Method Appl M 193: 1455–1470

    Article  MATH  Google Scholar 

  13. Codina R (1998) Comparison of some finite element methods for solving the diffusion–convection reaction equation. Comput Method Appl M 156: 185–210

    Article  MATH  MathSciNet  Google Scholar 

  14. Franca LP, Valentin F (2002) On an improved unusual stabilized finite element method for the advective–reactive diffusive equation. Comput Method Appl M 190: 1785–1800

    Article  MathSciNet  Google Scholar 

  15. Hauke G (2002) A simple subgrid scale stabilized method for the advection–diffusion reaction equation. Comput Method Appl M 191: 2925–2947

    Article  MATH  MathSciNet  Google Scholar 

  16. Gravemeier V, Wall WA (2007) A ‘divide-and-conquer’ spatial and temporal multiscale method for transient convection–diffusion reaction equations. Int J Numer Meth Fl 54: 779–804

    Article  MATH  MathSciNet  Google Scholar 

  17. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Method Appl M 127: 387–401

    Article  MATH  Google Scholar 

  18. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Method Appl M 32: 199–259

    Article  MATH  MathSciNet  Google Scholar 

  19. Liew SK, Bray KNC, Moss JB (1984) Laminar diffusion flamelet model of turbulent non-premixed combustion. Combust Flame 56: 199–213

    Article  Google Scholar 

  20. Peters N (1984) Laminar diffusion flamelet models in non- premixed turbulent combustion. Prog Energ Combust 10: 319–339

    Article  Google Scholar 

  21. Lentini D, Jones WP (1991) Computational modelling of dump combustors flowfield. NASA CP3078: 623–634

    Google Scholar 

  22. Lentini D (1994) Assessment of the stretched laminar flamelet approach for non-premixed turbulent combustion. Comb Sci Technol 100: 95–122

    Article  Google Scholar 

  23. Corsini A, Rispoli F (2005) Flow analyses in a high-pressure axial ventilation fan with a non-linear eddy viscosity closure. Int J Heat Fluid Fl 17: 108–155

    Google Scholar 

  24. Craft TJ, Launder BE, Suga K (1996) Development and application of a cubic eddy-viscosity model of turbulence. Int J Heat Fluid Fl 17: 108–155

    Article  Google Scholar 

  25. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Method Appl M 190: 411–430

    Article  MATH  Google Scholar 

  26. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fl 43: 555–575

    Article  MATH  MathSciNet  Google Scholar 

  27. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206

    Article  MATH  MathSciNet  Google Scholar 

  28. Mosier SA, Pierce RM (1980) Advanced combustor systems for stationary gas turbine engines, phase I. Review and preliminary evaluation, vol I, Contract 68-02-2136, FR-11405, US Environmental Protection Agency

  29. Pitsch H, Desjardins O, Balarac G, Ihme M (2008) Large-eddy simulation of turbulent reacting flows. Prog Aerosp Sci 44(6): 466–478

    Article  Google Scholar 

  30. ICAO Engine Exhaust Emission Data Bank (2004) Report PWA-4098-6726-01

  31. Kurze J (2005) How to create a performance model of a gas turbine from a limited amount of information. ASME paper GT2005-68537

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Corsini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corsini, A., Iossa, C., Rispoli, F. et al. A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46, 159–167 (2010). https://doi.org/10.1007/s00466-009-0441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0441-0

Keywords

Navigation