Skip to main content
Log in

An efficient meshfree method for vibration analysis of laminated composite plates

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A detailed analysis of natural frequencies of laminated composite plates using the meshfree moving Kriging interpolation method is presented. The present formulation is based on the classical plate theory while the moving Kriging interpolation satisfying the delta property is employed to construct the shape functions. Since the advantage of the interpolation functions, the method is more convenient and no special techniques are needed in enforcing the essential boundary conditions. Numerical examples with different shapes of plates are presented and the achieved results are compared with reference solutions available in the literature. Several aspects of the model involving relevant parameters, fiber orientations, lay-up number, length-to-length, stiffness ratios, etc. affected on frequency are analyzed numerically in details. The convergence of the method on the natural frequency is also given. As a consequence, the applicability and the effectiveness of the present method for accurately computing natural frequencies of generally shaped laminates are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ochoa OO, Reddy JN (1992) Finite element analysis of composite laminates. Kluwer, Dordrecht

    Google Scholar 

  2. Reddy JN (1985) A review of the literature on finite-element modeling of laminated composite plates. Shock Vib Digest 17: 3–8

    Article  Google Scholar 

  3. Reddy JN, Averill RC (1991) Advances in the modeling of laminated plates. Comput Syst Eng 2: 541–555

    Article  Google Scholar 

  4. Zhang YX, Yang CH (2009) Recent developments in finite element analysis for laminated composite plates. Compos Struct 88: 147–157

    Article  Google Scholar 

  5. Hearmon R (1959) The frequency of flexural vibrations of rectangular orthotropic plates with clamped or simply supported edges. J Appl Mech 26: 537–542

    MathSciNet  MATH  Google Scholar 

  6. Chow ST, Liew KM, Lam KY (1992) Transverse vibration of symmetrically laminated rectangular composite plates. Compos Struct 20: 213–226

    Article  Google Scholar 

  7. Liew KM, Lim CW (1995) Vibratory characteristics of general laminates, I: symmetric trapezoids. J Sound Vib 183: 615–642

    Article  MATH  Google Scholar 

  8. Leissa AW, Narita Y (1989) Vibration studies for simply supported symmetrically laminated rectangular plates. Compos Struct 12: 113–132

    Article  Google Scholar 

  9. Liew KM (1996) Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method. J Sound Vib 198: 343–360

    Article  Google Scholar 

  10. Liew KM, Lam KY, Chow ST (1989) Study on flexural vibration of triangular composite plates influenced by fibre orientation. Compos Struct 13: 123–132

    Article  Google Scholar 

  11. Hung KC, Liew MK, Lim KM, Leong SL (1993) Boundary beam characteristics orthonormal polynomials in energy approach for vibration of symmetric laminates-I: classical boundary conditions. Compos Struct 26: 167–184

    Article  Google Scholar 

  12. Venini P, Mariani C (1997) Free vibrations of uncertain composite plates via stochastic Ratleigh-Ritz approach. Comp Struct 64: 407–423

    Article  MATH  Google Scholar 

  13. Hu XX, Sakiyama T, Lim CW, Xiong Y, Matsuda H, Morita C (2004) Vibration of angle-ply laminated plates with twist by Rayleigh–Ritz procedure. Comp Method Appl Mech Eng 193: 805–823

    Article  MATH  Google Scholar 

  14. Wang YY, Lam KY, Liu GR (2000) Bending analysis of classical symmetric laminated composite plates by the strip element method. Mech Compos Mater Struct 7: 225–247

    Google Scholar 

  15. Liu GR, Lam KY (1994) Characterization of a horizontal crack in anisotropic laminated plates. Int J Solids Struct 31: 2965–2977

    Article  MATH  Google Scholar 

  16. Secgin A, Sarigul AS (2008) Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: algorithm and verification. J Sound Vib 315: 197–211

    Article  Google Scholar 

  17. Ng CHW, Zhao YB, Wei GW (2004) Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates. Comp Method Appl Mech Eng 193: 2483–2506

    Article  MATH  Google Scholar 

  18. Bellman R, Kashef BG, Casti J (1972) Differential quarature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10: 40–52

    Article  MathSciNet  MATH  Google Scholar 

  19. Lanhe W, Hua L, Daobin W (2005) Vibration analysis of generally laminated composite plates by the moving least square differential quadrature method. Compos Struct 68: 319–330

    Article  Google Scholar 

  20. Bert CW, Malik M (1996) The differential quadrature method for irregular domains and application to plate vibration. Int J Mech Sci 38: 589–606

    MATH  Google Scholar 

  21. Zeng H, Bert CW (2001) A differential quadrature analysis of vibration for rectangular stiffened plates. J Sound Vib 241: 247–252

    Article  Google Scholar 

  22. Liew KM, Huang YQ, Reddy JN (2003) Vibration analysis of symmetrically laminated plate based on the FSDT using the moving least squares differential quadrature method. Comp Method Appl Mech Eng 192: 2203–2222

    Article  MATH  Google Scholar 

  23. Zhang JC, Ng TY, Liew KM (2003) Three-dimensional theory of elasticity for free vibration analysis of composite laminates via layerwise differential quadrature modeling. Int J Numer Method Eng 57: 1819–1844

    Article  MATH  Google Scholar 

  24. Ferreira AJM (2003) A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos Struct 59: 385–392

    Article  Google Scholar 

  25. Ferreira AJM, Roque CMC, Jorge RMN (2005) Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions. Comp Method Appl Mech Eng 194: 4265–4278

    Article  MATH  Google Scholar 

  26. Roque CMC, Ferreira AJM, Jorge RMN (2007) A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory. J Sound Vib 300: 1048–1070

    Article  Google Scholar 

  27. Roque CMC, Ferreira AJM (2009) New developments in the radial basis functions analysis of composite shells. Compos Struct 87: 141–150

    Article  Google Scholar 

  28. Ferreira AJM (2005) Free vibration analysis of Timoshenko beams and Mindlin plates by radial basis functions. Int J Comp Meth 2: 15–31

    Article  MATH  Google Scholar 

  29. Roque CMC, Ferreira AJM, Jorge RMN (2005) Modeling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions. Compos Part B Eng 36: 559–572

    Google Scholar 

  30. Ferreira AJM, Fasshauer GE (2006) Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method. Comp Method Appl Mech Eng 196: 134–146

    Article  MATH  Google Scholar 

  31. Ferreira AJM, Fasshauer GE (2007) Analysis of natural frequencies of composite plates by an RBF-pseudospectral method. Compos Struct 79: 202–210

    Article  Google Scholar 

  32. Jiarang F, Jianqiao Y (1990) An exact solution for static and dynamics of laminated thick plates with orthotropic layers. Int J Solids Struct 26: 655–662

    Article  MATH  Google Scholar 

  33. Srinivas S, Joga CV, Rao AK (1970) An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates. J Sound Vib 12: 187–199

    Article  MATH  Google Scholar 

  34. Srinivas S, Rao AK (1970) Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int J Solids Struct 6: 1463–1481

    Article  MATH  Google Scholar 

  35. Vel SS, Batra RC (1999) Analytical solution for rectangular thick laminated plates subjected to arbitrary boundary conditions. AIAA J 37: 1646–1673

    Article  Google Scholar 

  36. Pagano NJ (1970) Exact solutions for rectangular bidirectional composites and sandwich plates. J Compos Mater 4: 20–34

    Google Scholar 

  37. Leissa AW, Kang JH (2002) Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses. Int J Mech Sci 44: 1925–1945

    Article  MATH  Google Scholar 

  38. Kang JH, Shim HJ (2004) Exact solutions for the free vibrations of rectangular plates having in-plane moments acting on two opposite simply supported edges. J Sound Vib 273: 933–948

    Article  Google Scholar 

  39. Xing YF, Liu B (2009) New exact solutions for free vibrations of thin orthotropic rectangular plates. Compos Struct 89: 567–574

    Article  Google Scholar 

  40. Belytschko T, Lu YY, Gu L (1994) Element free Galerkin method. Int J Numer Method Eng 37: 229–256

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle method. Int J Numer Method Fluids 20: 1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  42. Atluri SN, Zhu T (1998) A new meshless Petrov-Galerkin (MLPG) approach. Comp Mech 22: 117–127

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Method Eng 50: 937–951

    Article  MATH  Google Scholar 

  44. Li S, Liu WK (2004) Meshfree particle method. Springer, Berlin

    Google Scholar 

  45. Liu GR (2003) Meshfree methods: moving beyond the finite element method. CRC Press, Boca Raton

    Google Scholar 

  46. Wang J, Liew KM, Tan MJ, Rajendran S (2002) Analysis of rectangular laminated composite plates via FSDT meshless method. Int J Mech Sci 44: 1275–1293

    Article  MATH  Google Scholar 

  47. Xiao JR, Gilhooley DF, Batra RC, Gillespie JW, Mccarthy MA (2008) Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method. Compos Part B Eng 39: 414–427

    Article  Google Scholar 

  48. Liew KM, Lim HK, Tan MK, He XQ (2002) Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method. Comp Mech 29: 486–497

    Article  MATH  Google Scholar 

  49. Belinha J, Dinis LMJS (2006) Analysis of plates and laminates using the element-free Galerkin method. Comp Struct 84: 1547–1559

    Article  Google Scholar 

  50. Amirani MC, Khalili SMR, Nemati N (2009) Free vibration analysis of sandwich beam with FG core using the element free Galerkin method. Compos Struct 90: 373–379

    Article  Google Scholar 

  51. Liu GR, Zhao Z, Dai KY, Zhong Zh, Li GY, Han X (2008) Static and free vibration analysis of laminated composite plates using the conforming radial point interpolation method. Compos Sci Tech 68: 345–366

    Google Scholar 

  52. Xiang S, Wang KM, Ai YT, Sha YD, Shi H (2009) Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories. Compos Struct 91: 31–37

    Article  Google Scholar 

  53. Dai KY, Liu GR, Lim MK, Chen XL (2004) A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates. J Sound Vib 269: 633–652

    Article  Google Scholar 

  54. Chen XL, Liu GR, Lim SP (2003) An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape. Compos Struct 59: 279–289

    Article  Google Scholar 

  55. Belyschko T, Organ D, Krongauz Y (1995) A coupled finite element–element frer Galerkin method. Comp Mech 17: 186–195

    Google Scholar 

  56. Krysl P, Belyschko T (1995) Analysis of thin plates by the element free Galerkin method. Comp Mech 17: 26–35

    Article  MATH  Google Scholar 

  57. Krysl P, Belyschko T (1996) Analysis of thin shells by the element free Galerkin method. Int J Solids Struct 33: 3057–3080

    Article  MATH  Google Scholar 

  58. Donning B, Liu WK (1998) Meshless methods for shear- deformable beams and plates. Comp Method Appl Mech Eng 152: 47–72

    Article  MATH  Google Scholar 

  59. Garcia O, Fancello EA, Barcellos CS, Duarte CA (2000) Hp-clouds in Mindlin’s thick plate model. Int J Numer Method Eng 47: 1381–1400

    Article  MATH  Google Scholar 

  60. Liew KM, Huang YQ, Reddy JN (2003) Moving least squares differential quadrature method and its application to the analysis of shear deformable plates. Int J Numer Method Eng 56: 2331–2351

    Article  MATH  Google Scholar 

  61. Liew KM, Huang YQ, Reddy JN (2004) Analysis of general shaped thin plates by the moving least-squares differential quadrature method. Finite Elem Anal Des 40: 1453–1474

    Article  Google Scholar 

  62. Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method. Part I: Theoretical formulation. Comp Method Appl Mech Eng 193: 933–951

    MathSciNet  MATH  Google Scholar 

  63. Li S, Lu H, Han W, Simkins DC Jr, Liu WK (2004) Reproducing kernel element method. Part II: Globally conforming I m/C n hierarchies. Comp Method Appl Mech Eng 193: 954–987

    MathSciNet  Google Scholar 

  64. Simkins DC Jr, Li S, Lu H, Liu WK (2004) Reproducing kernel element method. Part IV: Globally compatible C n(n ≥ 1) triangular hierarchy. Comp Method Appl Mech Eng 1(193): 1013–1034

    Article  MathSciNet  Google Scholar 

  65. Wang D, Chen JS (2004) Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Comp Method Appl Mech Eng 193: 1065–1083

    Article  MATH  Google Scholar 

  66. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Method Eng 50: 435–466

    Article  MATH  Google Scholar 

  67. Zhao X, Liu GR, Dai KY, Zhong ZH, Li GY, Han X (2009) A linearly conforming radial point interpolation method (LC-RPIM) for shells. Comp Mech 43: 403–413

    Article  MATH  Google Scholar 

  68. Zhao X, Liu GR, Dai KY, Zhong ZH, Li GY, Han X (2009) Free-vibration analysis of shells via a linearly conforming radial point interpolation method (LC-RPIM). Finite Elem Anal Des 45: 917–924

    Article  Google Scholar 

  69. Cui XY., Liu GR., Li GY., Zhang GY. (2011) Thin plate formulation without rotation DOFs based on radial point interpolation method. Int J Numer Method Eng 85: 958–986

    Article  MathSciNet  MATH  Google Scholar 

  70. Castellazzi G, Krysl P (2009) Displacement-based finite elements with nodal integration for Reissner-Mindlin plates. Int J Numer Method Eng 80: 135–162

    Article  MathSciNet  MATH  Google Scholar 

  71. Cui XY, Liu GR, Li GY, Zhang GY, Zheng G (2010) Analysis of plates and shells using an edge-based smoothed finite element method. Comp Mech 45: 141–156

    Article  MathSciNet  MATH  Google Scholar 

  72. Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie J (2008) A smoothed finite element method for plates. Comp Method Appl Mech Eng 197: 1184–1203

    Article  MATH  Google Scholar 

  73. Lee PS, Bathe KJ (2004) Development of MITC isotropic triangular shell finite elements. Comput Struct 82: 945–962

    Article  Google Scholar 

  74. Kim DN, Bathe KJ (2008) A 4-node 3D-shell element to model shell surface tractions and incompressible behavior. Comput Struct 86: 2027–2041

    Article  Google Scholar 

  75. Kim DN, Bathe KJ (2009) A triangular six-node shell element. Comput Struct 87: 1451–1460

    Article  Google Scholar 

  76. Lee PS, Bathe KJ (2010) The quadratic MITC plate and MITC shell elements in plate bending. Adv Eng Softw 41: 712–728

    Article  MATH  Google Scholar 

  77. Chandrashekhar M, Ganguli R (2010) Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties. Int J Mech Sci 52: 874–891

    Article  Google Scholar 

  78. Gu L (2003) Moving Kriging interpolation and element free Galerkin method. Int J Numer Method Eng 56: 1–11

    Article  MATH  Google Scholar 

  79. Tongsuk P, Kanok-Nukulchai W (2004) On the parametric refinement of moving Kriging interpolations for element free Galerkin method. In: Proceedings of Computational Mechanics WCCM VI in conjunction with APCOM’04, 5–10 Sep 2004, Beijing, China

  80. Tongsuk P, Kanok-Nukulchai W (2004) Further investigation of element free Galerkin method using moving Kriging interpolation. Int J Comp Meth 1: 1–21

    Article  Google Scholar 

  81. Sayakoummane V, Kanok-Nukulchai W (2007) A meshless analysis of shells based on moving Kriging interpolation. Int J Comp Meth 4: 543–565

    Article  MathSciNet  Google Scholar 

  82. Bui QT, Nguyen NT, Nguyen-Dang H (2009) A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems. Int J Numer Method Eng 77: 1371–1395

    Article  MathSciNet  MATH  Google Scholar 

  83. Bui QT., Nguyen NM., Zhang Ch. (2011) A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis. Comp Method Appl Mech Eng 200: 1354–1366

    Article  Google Scholar 

  84. Bui QT, Nguyen NM, Zhang Ch, Pham DAK (2010) An efficient meshfree method for analysis of two-dimensional piezoelectric structures. Smart Mater Struct (in review)

  85. Reddy JN (1996) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    Google Scholar 

  86. Whitney JM (1987) Structural analysis of laminated anisotropic plates. Technomic Publishing Company Inc, Pennsylvania, USA

    Google Scholar 

  87. Liu Y, Hon YX, Liew KM (2006) A meshfree Hermite-type radial point interpolation method for Kirchhoff plate problems. Int J Numer Method Eng 66: 1153–1178

    Article  MATH  Google Scholar 

  88. Cui XY, Liu GR, Li G (2011) A smoothed Hermite radial point interpolation method for thin plate analysis. Arch Appl Mech 81: 1–18

    Article  Google Scholar 

  89. Abbassian F, Dawswell DJ, Knowles NC (1987) Free vibration benchmarks. Atkins Engineering Sciences, Glasgow, UK

    Google Scholar 

  90. Khosravifard A, Hermatiyan MR (2010) A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Eng Anal Bound Elem 34: 30–40

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinh Quoc Bui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, T.Q., Nguyen, M.N. & Zhang, C. An efficient meshfree method for vibration analysis of laminated composite plates. Comput Mech 48, 175–193 (2011). https://doi.org/10.1007/s00466-011-0591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0591-8

Keywords

Navigation