Skip to main content
Erschienen in: Computational Mechanics 6/2014

01.06.2014 | Original Paper

What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity

verfasst von: Marcos Latorre, Francisco Javier Montáns

Erschienen in: Computational Mechanics | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a model for incompressible finite strain orthotropic hyperelasticity using logarithmic strains. The model does not have a prescribed shape. Instead, the energy function shape and the material data of the model are obtained solving the equilibrium equations of the different experiments. As a result the model almost exactly replicates the given experimental data for all six tests needed to completely define our nonlinear orthotropic material. We derive the constitutive tensor and demonstrate the efficiency of the finite element implementation for complex loading situations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey
2.
Zurück zum Zitat Kojic M, Bathe KJ (2005) Inelastic analysis of solids and structures. Springer, New York Kojic M, Bathe KJ (2005) Inelastic analysis of solids and structures. Springer, New York
3.
Zurück zum Zitat Ogden RW (1997) Non-linear elastic deformations. Dover, Mineola Ogden RW (1997) Non-linear elastic deformations. Dover, Mineola
4.
Zurück zum Zitat Montáns FJ, Bathe KJ (2007) Towards a model for large strain anisotropic elasto-plasticity. In: Onate E, Owen R (eds) Computational plasticity. Springer, Netherlands, pp 13–36CrossRef Montáns FJ, Bathe KJ (2007) Towards a model for large strain anisotropic elasto-plasticity. In: Onate E, Owen R (eds) Computational plasticity. Springer, Netherlands, pp 13–36CrossRef
5.
Zurück zum Zitat Caminero MÁ, Montáns FJ, Bathe KJ (2011) Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comp Struct 89:826–843CrossRef Caminero MÁ, Montáns FJ, Bathe KJ (2011) Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comp Struct 89:826–843CrossRef
6.
Zurück zum Zitat Kojic M, Bathe KJ (1987) Studies of finite element procedures stress solution of a closed elastic strain path with stretching and shearing using the updated lagrangian Jaumann formulation. Comp Struct 26(1/2):175–179CrossRefMATH Kojic M, Bathe KJ (1987) Studies of finite element procedures stress solution of a closed elastic strain path with stretching and shearing using the updated lagrangian Jaumann formulation. Comp Struct 26(1/2):175–179CrossRefMATH
7.
Zurück zum Zitat Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A 326:565–584CrossRefMATH Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A 326:565–584CrossRefMATH
8.
9.
Zurück zum Zitat Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Phil Trans R Soc Lond A 241(835):379–397CrossRefMATHMathSciNet Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Phil Trans R Soc Lond A 241(835):379–397CrossRefMATHMathSciNet
10.
Zurück zum Zitat Blatz PJ, Ko WL (1962) Application of finite elasticity theory to the deformation of rubbery materials. Trans Soc Rheol 6:223–251CrossRef Blatz PJ, Ko WL (1962) Application of finite elasticity theory to the deformation of rubbery materials. Trans Soc Rheol 6:223–251CrossRef
11.
Zurück zum Zitat Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63:792–805CrossRef Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63:792–805CrossRef
12.
Zurück zum Zitat Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412CrossRef Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412CrossRef
13.
Zurück zum Zitat Twizell EH, Ogden RW (1983) Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. J Aust Math Soc B 24:424–434CrossRefMATHMathSciNet Twizell EH, Ogden RW (1983) Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. J Aust Math Soc B 24:424–434CrossRefMATHMathSciNet
14.
Zurück zum Zitat Itskov M (2001) A generalized orthotropic hyperelastic material model with application to incompressible shells. Int J Number Method Eng 50:1777–1799CrossRefMATH Itskov M (2001) A generalized orthotropic hyperelastic material model with application to incompressible shells. Int J Number Method Eng 50:1777–1799CrossRefMATH
15.
Zurück zum Zitat Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solid Struct 41:3833–3848CrossRefMATHMathSciNet Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solid Struct 41:3833–3848CrossRefMATHMathSciNet
16.
Zurück zum Zitat Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35CrossRef Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35CrossRef
17.
Zurück zum Zitat Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a characterization structurally based framework for material characterization. Phil Trans R Soc A 367:3445–3475CrossRefMATHMathSciNet Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a characterization structurally based framework for material characterization. Phil Trans R Soc A 367:3445–3475CrossRefMATHMathSciNet
18.
Zurück zum Zitat Holzapfel GA, Gasser TC (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48CrossRefMATHMathSciNet Holzapfel GA, Gasser TC (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48CrossRefMATHMathSciNet
19.
Zurück zum Zitat Sussman T, Bathe KJ (2009) A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension–compression test data. Commun Number Method Eng 25:53–63CrossRefMATHMathSciNet Sussman T, Bathe KJ (2009) A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension–compression test data. Commun Number Method Eng 25:53–63CrossRefMATHMathSciNet
20.
Zurück zum Zitat Kearsley EA, Zapas LJ (1980) Some methods of measurement of an elastic strain–energy function of the Valanis–Landel type. J Rheol 24:483–501CrossRef Kearsley EA, Zapas LJ (1980) Some methods of measurement of an elastic strain–energy function of the Valanis–Landel type. J Rheol 24:483–501CrossRef
21.
Zurück zum Zitat Latorre M, Montáns FJ (2013) Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comp Struct 122:13–26CrossRef Latorre M, Montáns FJ (2013) Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comp Struct 122:13–26CrossRef
22.
Zurück zum Zitat Latorre M, Montáns FJ (2014) On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int J Solids Struct (in press) Latorre M, Montáns FJ (2014) On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int J Solids Struct (in press)
23.
Zurück zum Zitat Valanis KC, Landel RF (1967) The strain–energy function of a hyperelastic material in terms of the extension ratios. J App Phys 38:2997–3002CrossRef Valanis KC, Landel RF (1967) The strain–energy function of a hyperelastic material in terms of the extension ratios. J App Phys 38:2997–3002CrossRef
24.
Zurück zum Zitat Montáns FJ, Benítez JM, Caminero MÁ (2012) A large strain anisotropic elastoplastic continuum theory for nonlinear kinematic hardening and texture evolution. Mech Res Commun 43: 50–56 Montáns FJ, Benítez JM, Caminero MÁ (2012) A large strain anisotropic elastoplastic continuum theory for nonlinear kinematic hardening and texture evolution. Mech Res Commun 43: 50–56
25.
Zurück zum Zitat Miehe C, Lambrecht M (2001) Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun Numer Methods Eng 17:337–353CrossRefMATH Miehe C, Lambrecht M (2001) Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun Numer Methods Eng 17:337–353CrossRefMATH
26.
Zurück zum Zitat Anand L (1979) On H. Hencky’s approximate strain–energy function for moderate deformations. J App Mech 46:78–82CrossRefMATH Anand L (1979) On H. Hencky’s approximate strain–energy function for moderate deformations. J App Mech 46:78–82CrossRefMATH
27.
Zurück zum Zitat Anand L (1986) Moderate deformations in extension–torsion of incompressible isotropic elastic materials. J Mech Phys Solid 34:293–304CrossRef Anand L (1986) Moderate deformations in extension–torsion of incompressible isotropic elastic materials. J Mech Phys Solid 34:293–304CrossRef
28.
Zurück zum Zitat Morrow DA, Donahue TLH, Odegard GM, Kaufman KR (2010) Transversely isotropic tensile material properties of skeletal muscle tissue. J Mech Behav Biomed Mater 3:124–129CrossRef Morrow DA, Donahue TLH, Odegard GM, Kaufman KR (2010) Transversely isotropic tensile material properties of skeletal muscle tissue. J Mech Behav Biomed Mater 3:124–129CrossRef
29.
Zurück zum Zitat Holzapfel GA, Sommer G, Gasser TC, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289:2048–2058CrossRef Holzapfel GA, Sommer G, Gasser TC, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289:2048–2058CrossRef
30.
Zurück zum Zitat Sacks MS (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng 121(5):551–555CrossRef Sacks MS (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng 121(5):551–555CrossRef
31.
Zurück zum Zitat Dokos S, Smaill BH, Young AA, LeGrice IL (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol 283:2650–2659 Dokos S, Smaill BH, Young AA, LeGrice IL (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol 283:2650–2659
32.
Zurück zum Zitat Diani J, Brieu M, Vacherand JM, Rezgui A (2004) Directional model for isotropic and anisotropic hyperelastic rubber-like materials. Mech Mater 36:313–321 Diani J, Brieu M, Vacherand JM, Rezgui A (2004) Directional model for isotropic and anisotropic hyperelastic rubber-like materials. Mech Mater 36:313–321
33.
Zurück zum Zitat Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comp Struct 26:357–409CrossRefMATH Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comp Struct 26:357–409CrossRefMATH
34.
Zurück zum Zitat Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solids Struct 40:2767–2791CrossRefMATHMathSciNet Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solids Struct 40:2767–2791CrossRefMATHMathSciNet
Metadaten
Titel
What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity
verfasst von
Marcos Latorre
Francisco Javier Montáns
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-013-0971-3

Weitere Artikel der Ausgabe 6/2014

Computational Mechanics 6/2014 Zur Ausgabe

Neuer Inhalt