Skip to main content
Erschienen in: Computational Mechanics 1/2014

01.07.2014 | Original Paper

Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations

verfasst von: Daniel Riedlbauer, Paul Steinmann, Julia Mergheim

Erschienen in: Computational Mechanics | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present contribution is concerned with the macroscopic modelling of the selective electron beam melting process by using the finite element method. The modelling and simulation of the selective electron beam melting process involves various challenges: complex material behaviour, phase changes, thermomechanical coupling, high temperature gradients, different time and length scales etc. The present contribution focuses on performance considerations of solution approaches for thermomechanically coupled problems, i.e. the monolithic and the adiabatic split approach. The material model is restricted to nonlinear thermoelasticity with temperature-dependent material parameters. As a numerical example a straight scanning path is simulated, the predicted temperatures and stresses are analysed and the performance of the two algorithms is compared. The adiabatic split approach turned out to be much more efficient for linear thermomechanical problems, i.e. the solution time is three times less than with the monolithic approach. For nonlinear problems, stability issues necessitated the use of the Euler backward integration scheme, and therefore, the adiabatic split approach required small time steps for reasonable accuracy. Thus, for nonlinear problems and in combination with the Euler backward integration scheme, the monolithic solver turned out to be more efficient.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Argyris JH, Szimmat J, Willam KJ (1982) Computational aspects of welding stress analysis. Comput Methods Appl Mech Eng 33(1):635–665CrossRefMATH Argyris JH, Szimmat J, Willam KJ (1982) Computational aspects of welding stress analysis. Comput Methods Appl Mech Eng 33(1):635–665CrossRefMATH
2.
Zurück zum Zitat Armero F, Simo J (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35(4):737–766CrossRefMATHMathSciNet Armero F, Simo J (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35(4):737–766CrossRefMATHMathSciNet
3.
Zurück zum Zitat Bangerth W, Hartmann R, Kanschat G (2007) deal. iia general-purpose object-oriented finite element library. ACM Trans Math Softw (TOMS) 33(4):24CrossRefMathSciNet Bangerth W, Hartmann R, Kanschat G (2007) deal. iia general-purpose object-oriented finite element library. ACM Trans Math Softw (TOMS) 33(4):24CrossRefMathSciNet
4.
Zurück zum Zitat Čanadija M, Brnić J (2004) Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. Int J Plast 20(10):1851–1874 Čanadija M, Brnić J (2004) Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. Int J Plast 20(10):1851–1874
5.
Zurück zum Zitat Chen T, Zhang Y (2006) Three-dimensional modeling of selective laser sintering of two-component metal powder layers. Trans-Am Soc Mech Eng J Manuf Sci Eng 128(1):299 Chen T, Zhang Y (2006) Three-dimensional modeling of selective laser sintering of two-component metal powder layers. Trans-Am Soc Mech Eng J Manuf Sci Eng 128(1):299
6.
Zurück zum Zitat Contuzzi N, Campanelli S, Ludovico A (2011) 3d finite element analysis in the selective laser melting process. Int J Simul Model 10:113–121CrossRef Contuzzi N, Campanelli S, Ludovico A (2011) 3d finite element analysis in the selective laser melting process. Int J Simul Model 10:113–121CrossRef
7.
Zurück zum Zitat Dai K, Shaw L (2004) Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater 52(1):69–80CrossRef Dai K, Shaw L (2004) Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater 52(1):69–80CrossRef
8.
Zurück zum Zitat Dong L, Makradi A, Ahzi S, Remond Y (2009) Three-dimensional transient finite element analysis of the selective laser sintering process. J Mater Process Technol 209:700–706CrossRef Dong L, Makradi A, Ahzi S, Remond Y (2009) Three-dimensional transient finite element analysis of the selective laser sintering process. J Mater Process Technol 209:700–706CrossRef
9.
Zurück zum Zitat Ehlers W, Zinatbakhsh S, Markert B (2013) Stability analysis of finite difference schemes revisited: A study of decoupled solution strategies for coupled multifield problems. Int J Numer Methods Eng 94(8):758–786 Ehlers W, Zinatbakhsh S, Markert B (2013) Stability analysis of finite difference schemes revisited: A study of decoupled solution strategies for coupled multifield problems. Int J Numer Methods Eng 94(8):758–786
10.
Zurück zum Zitat Felippa CA, Park K, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24):3247–3270CrossRefMATH Felippa CA, Park K, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24):3247–3270CrossRefMATH
11.
Zurück zum Zitat Heinl P, Müller L, Körner C, Singer RF, Müller FA (2008) Cellular ti–6al–4v structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544CrossRef Heinl P, Müller L, Körner C, Singer RF, Müller FA (2008) Cellular ti–6al–4v structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater 4(5):1536–1544CrossRef
12.
Zurück zum Zitat Heinl P, Rottmair A, Körner C, Singer RF (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9(5):360–364CrossRef Heinl P, Rottmair A, Körner C, Singer RF (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9(5):360–364CrossRef
13.
Zurück zum Zitat Jhabvala J (2010) Study of the consolidation process under macro-and microscopic thermal effects in selective laser sintering and selective laser melting. Ph.D. Thesis, EPFL Jhabvala J (2010) Study of the consolidation process under macro-and microscopic thermal effects in selective laser sintering and selective laser melting. Ph.D. Thesis, EPFL
14.
Zurück zum Zitat Johansson L, Klarbring A (1993) Thermoelastic frictional contact problems: modelling, finite element approximation and numerical realization. Comput Methods Appl Mech Eng 105(2):181–210CrossRefMATHMathSciNet Johansson L, Klarbring A (1993) Thermoelastic frictional contact problems: modelling, finite element approximation and numerical realization. Comput Methods Appl Mech Eng 105(2):181–210CrossRefMATHMathSciNet
15.
Zurück zum Zitat Kolossov S, Boillat E, Glardon R, Fischer P, Locher M (2004) 3d fe simulation for temperature evolution in the selective laser sintering process. Int J Machine Tools Manuf 44(2):117–123CrossRef Kolossov S, Boillat E, Glardon R, Fischer P, Locher M (2004) 3d fe simulation for temperature evolution in the selective laser sintering process. Int J Machine Tools Manuf 44(2):117–123CrossRef
16.
Zurück zum Zitat Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987CrossRef Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987CrossRef
17.
Zurück zum Zitat Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1):616–622CrossRef Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1):616–622CrossRef
18.
Zurück zum Zitat Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36CrossRef Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36CrossRef
19.
Zurück zum Zitat Lindgren LE (2006) Numerical modelling of welding. Comput Methods Appl Mech Eng 195(48):6710–6736CrossRefMATH Lindgren LE (2006) Numerical modelling of welding. Comput Methods Appl Mech Eng 195(48):6710–6736CrossRefMATH
20.
Zurück zum Zitat Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265CrossRef Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265CrossRef
21.
Zurück zum Zitat Sedlak J, Piska M, Ptaekova M, Madaj M, Charvat O, Dvooaeek J, Zouhar J, Rozkosny L (2010) Properties of the biocompatible TiAl6V4 material produced by DMLS. MTM Int Virtual J 4–5:74–78 Sedlak J, Piska M, Ptaekova M, Madaj M, Charvat O, Dvooaeek J, Zouhar J, Rozkosny L (2010) Properties of the biocompatible TiAl6V4 material produced by DMLS. MTM Int Virtual J 4–5:74–78
22.
Zurück zum Zitat Simo J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(1):41–104CrossRefMATH Simo J, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(1):41–104CrossRefMATH
23.
Zurück zum Zitat Williams JD, Deckard CR (1998) Advances in modeling the effects of selected parameters on the sls process. Rapid Prototyp J 4(2):90–100CrossRef Williams JD, Deckard CR (1998) Advances in modeling the effects of selected parameters on the sls process. Rapid Prototyp J 4(2):90–100CrossRef
24.
Zurück zum Zitat Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4(1):35–45CrossRef Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng 4(1):35–45CrossRef
Metadaten
Titel
Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations
verfasst von
Daniel Riedlbauer
Paul Steinmann
Julia Mergheim
Publikationsdatum
01.07.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1026-0

Weitere Artikel der Ausgabe 1/2014

Computational Mechanics 1/2014 Zur Ausgabe

Neuer Inhalt