Skip to main content
Erschienen in: Computational Mechanics 3/2014

01.09.2014 | Original Paper

New advances in the forced response computation of periodic structures using the wave finite element (WFE) method

verfasst von: J.-M. Mencik

Erschienen in: Computational Mechanics | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wave finite element (WFE) method is investigated to describe the harmonic forced response of one-dimensional periodic structures like those composed of complex substructures and encountered in engineering applications. The dynamic behavior of these periodic structures is analyzed over wide frequency bands where complex spatial dynamics, inside the substructures, are likely to occur. Within the WFE framework, the dynamic behavior of periodic structures is described in terms of numerical wave modes. Their computation follows from the consideration of the finite element model of a substructure that involves a large number of internal degrees of freedom. Some rules of thumb of the WFE method are highlighted and discussed to circumvent numerical issues like ill-conditioning and instabilities. It is shown for instance that an exact analytic relation needs to be considered to enforce the coherence between positive-going and negative-going wave modes. Besides, a strategy is proposed to interpolate the frequency response functions of periodic structures at a reduced number of discrete frequencies. This strategy is proposed to tackle the problem of large CPU times involved when the wave modes are to be computed many times. An error indicator is formulated which provides a good estimation of the level of accuracy of the interpolated solutions at intermediate points. Adaptive refinement is carried out to ensure that this error indicator remains below a certain tolerance threshold. Numerical experiments highlight the relevance of the proposed approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In other words, it is expected that the condensed dynamic stiffness matrix issued from an arbitrary mesh is almost the same as the one involved by a symmetric mesh, provided that the number of internal nodes is large enough.
 
2
This is achieved by considering the components \(\mathbf{D}_\mathtt{IB}\) and \(\mathbf{D}_\mathtt{II}\) of the dynamic stiffness matrix of the substructure, i.e, \(\mathbf{q}_\mathtt{I}=-\mathbf{D}_\mathtt{II}^{-1}\mathbf{D}_\mathtt{IB}\mathbf{q}_\mathtt{B}\). Alternatively, the Craig–Bampton procedure may be used to circumvent the direct computation of the matrix inverse \(\mathbf{D}_\mathtt{II}^{-1}\) [4].
 
Literatur
1.
Zurück zum Zitat Allman DJ (1996) Implementation of a flat facet shell finite element for applications in structural dynamics. Comput Str 59(4):657–663CrossRefMATH Allman DJ (1996) Implementation of a flat facet shell finite element for applications in structural dynamics. Comput Str 59(4):657–663CrossRefMATH
2.
Zurück zum Zitat Argyris JH, Papadrakakis M, Apostolopoulou C, Koutsourelakis S (2000) The TRIC shell element: theoretical and numerical investigation. Comput Method Appl Mech Eng 182:217–245CrossRefMATH Argyris JH, Papadrakakis M, Apostolopoulou C, Koutsourelakis S (2000) The TRIC shell element: theoretical and numerical investigation. Comput Method Appl Mech Eng 182:217–245CrossRefMATH
3.
Zurück zum Zitat Bai Z, Dewilde PM, Freund RW (2005) Reduced-order modeling. In: Schilders WHA, ter Maten EJW (eds) Numerical methods in electromagnetics. Handbook of numerical analysis, vol 13, Elseiver, Amsterdam, pp 825–895 Bai Z, Dewilde PM, Freund RW (2005) Reduced-order modeling. In: Schilders WHA, ter Maten EJW (eds) Numerical methods in electromagnetics. Handbook of numerical analysis, vol 13, Elseiver, Amsterdam, pp 825–895
4.
Zurück zum Zitat Craig RR, Bampton MCC (1968) Coupling of substructures for dynamic analyses. AIAA J 6(7):1313–1319CrossRefMATH Craig RR, Bampton MCC (1968) Coupling of substructures for dynamic analyses. AIAA J 6(7):1313–1319CrossRefMATH
5.
Zurück zum Zitat Duhamel D, Mace B, Brennan MJ (2006) Finite element analysis of the vibrations of waveguides and periodic structures. J Sound Vib 294:205–220CrossRef Duhamel D, Mace B, Brennan MJ (2006) Finite element analysis of the vibrations of waveguides and periodic structures. J Sound Vib 294:205–220CrossRef
6.
Zurück zum Zitat Gavric L (1995) Computation of propagative waves in free rail using a finite element technique. J Sound Vib 185(3):531–543CrossRefMATH Gavric L (1995) Computation of propagative waves in free rail using a finite element technique. J Sound Vib 185(3):531–543CrossRefMATH
7.
Zurück zum Zitat Gry L, Gontier C (1997) Dynamic modelling of railway track: a periodic model based on a generalized beam formulation. J Sound Vib 199(4):531–558CrossRef Gry L, Gontier C (1997) Dynamic modelling of railway track: a periodic model based on a generalized beam formulation. J Sound Vib 199(4):531–558CrossRef
8.
Zurück zum Zitat Hetmaniuk U, Tezaur R, Farhat C (2013) An adaptive scheme for a class of interpolatory model reduction methods for frequency response problems. Int J Numer Method Eng 93:1109–1124CrossRefMathSciNet Hetmaniuk U, Tezaur R, Farhat C (2013) An adaptive scheme for a class of interpolatory model reduction methods for frequency response problems. Int J Numer Method Eng 93:1109–1124CrossRefMathSciNet
9.
Zurück zum Zitat Hussein M (2009) Reduced Bloch mode expansion for periodic media band structure calculations. Proc Royal Soc A 465:2825–2848 Hussein M (2009) Reduced Bloch mode expansion for periodic media band structure calculations. Proc Royal Soc A 465:2825–2848
10.
Zurück zum Zitat Mace B, Duhamel D, Brennan M, Hinke L (2005) Finite element prediction of wave motion in structural waveguides. J Acoust Soc Am 117:2835CrossRef Mace B, Duhamel D, Brennan M, Hinke L (2005) Finite element prediction of wave motion in structural waveguides. J Acoust Soc Am 117:2835CrossRef
11.
Zurück zum Zitat Mace B, Manconi E (2008) Modelling wave propagation in two-dimensional structures using finite element analysis. J Sound Vib 318(4–5):884–902CrossRef Mace B, Manconi E (2008) Modelling wave propagation in two-dimensional structures using finite element analysis. J Sound Vib 318(4–5):884–902CrossRef
12.
Zurück zum Zitat Manconi E, Mace B, Gaziera R (2009) Wave finite element analysis of fluid-filled pipes. In: Proceedings of the NOVEM 2009 “noise and vibration: emerging methods”, Oxford, UK Manconi E, Mace B, Gaziera R (2009) Wave finite element analysis of fluid-filled pipes. In: Proceedings of the NOVEM 2009 “noise and vibration: emerging methods”, Oxford, UK
13.
Zurück zum Zitat Mead D (1973) A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. J Sound Vib 27(2):235–260CrossRefMATH Mead D (1973) A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. J Sound Vib 27(2):235–260CrossRefMATH
14.
Zurück zum Zitat Mencik JM (2010) On the low- and mid-frequency forced response of elastic systems using wave finite elements with one-dimensional propagation. Comput Str 88(11–12):674–689CrossRef Mencik JM (2010) On the low- and mid-frequency forced response of elastic systems using wave finite elements with one-dimensional propagation. Comput Str 88(11–12):674–689CrossRef
15.
Zurück zum Zitat Mencik JM (2013) A wave finite element based formulation for computing the forced response of structures involving rectangular flat shells. Int J Numer Method Eng 95(2):91–120CrossRefMathSciNet Mencik JM (2013) A wave finite element based formulation for computing the forced response of structures involving rectangular flat shells. Int J Numer Method Eng 95(2):91–120CrossRefMathSciNet
16.
Zurück zum Zitat Mencik JM, Ichchou MN (2005) Multi-mode propagation and diffusion in structures through finite elements. Eur J Mech A/Solids 24(5):877–898CrossRefMATHMathSciNet Mencik JM, Ichchou MN (2005) Multi-mode propagation and diffusion in structures through finite elements. Eur J Mech A/Solids 24(5):877–898CrossRefMATHMathSciNet
17.
Zurück zum Zitat Mencik JM, Ichchou MN (2007) Wave finite elements in guided elastodynamics with internal fluid. Int J Solids Str 44:2148–2167CrossRefMATH Mencik JM, Ichchou MN (2007) Wave finite elements in guided elastodynamics with internal fluid. Int J Solids Str 44:2148–2167CrossRefMATH
18.
Zurück zum Zitat Nilsson CM, Finnveden S (2008) Waves in thin-walled fluid-filled ducts with arbitrary cross-sections. J Sound Vib 310(1–2):58–76CrossRef Nilsson CM, Finnveden S (2008) Waves in thin-walled fluid-filled ducts with arbitrary cross-sections. J Sound Vib 310(1–2):58–76CrossRef
19.
Zurück zum Zitat Renno J, Mace B (2010) On the forced response of waveguides using the wave and finite element method. J Sound Vib 329(26):5474–5488CrossRef Renno J, Mace B (2010) On the forced response of waveguides using the wave and finite element method. J Sound Vib 329(26):5474–5488CrossRef
20.
Zurück zum Zitat Salimbahrami B, Lohmann B (2006) Order reduction of large scale second-order systems using Krylov subspace methods. Linear Algebra Appl 415:385–405CrossRefMATHMathSciNet Salimbahrami B, Lohmann B (2006) Order reduction of large scale second-order systems using Krylov subspace methods. Linear Algebra Appl 415:385–405CrossRefMATHMathSciNet
21.
Zurück zum Zitat Signorelli J, von Flotow A (1988) Wave propagation, power flow, and resonance in a truss beam. J Sound Vib 126(1):127–144CrossRef Signorelli J, von Flotow A (1988) Wave propagation, power flow, and resonance in a truss beam. J Sound Vib 126(1):127–144CrossRef
22.
Zurück zum Zitat Waki Y, Mace B, Brennan M (2009) Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J Sound Vib 327(1–2):92–108CrossRef Waki Y, Mace B, Brennan M (2009) Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J Sound Vib 327(1–2):92–108CrossRef
23.
Zurück zum Zitat Zhong WX, Williams FW (1995) On the direct solution of wave propagation for repetitive structures. J Sound Vib 181(3):485–501CrossRef Zhong WX, Williams FW (1995) On the direct solution of wave propagation for repetitive structures. J Sound Vib 181(3):485–501CrossRef
Metadaten
Titel
New advances in the forced response computation of periodic structures using the wave finite element (WFE) method
verfasst von
J.-M. Mencik
Publikationsdatum
01.09.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1033-1

Weitere Artikel der Ausgabe 3/2014

Computational Mechanics 3/2014 Zur Ausgabe

Neuer Inhalt