Skip to main content
Erschienen in: Computational Mechanics 5/2014

01.11.2014 | Original Paper

A new SMA shell element based on the corotational formulation

verfasst von: P. Bisegna, F. Caselli, S. Marfia, E. Sacco

Erschienen in: Computational Mechanics | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aim of this paper is to develop a new shape memory alloy (SMA) facet-shell finite element accounting for material and geometric nonlinearities. A corotational formulation is exploited, able to filter out large rigid-body motions from the element transformation. Accordingly, a geometrically linear core-element is employed, along with a SMA constitutive model formulated in the small strain framework. In particular, in accordance with the formulation of the classical thin shell theory, a plane-stress SMA model accounting for the pseudo-elastic as well as the shape memory effect is adopted. The time integration of the evolutive equation is performed developing a step-by-step backward-Euler numerical procedure. A highly efficient implementation of the corotational machinery is used, endowed with a fully consistent tangent stiffness. Applications are carried out for assessing the performances of the developed computational procedure and to investigate on some interesting engineering examples. The numerical results show the effectiveness of the proposed shell element, whose simplicity makes it attractive for the design of new advanced SMA-based devices undergoing significant configuration changes during their operation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Lagoudas D (2008) Shape memory alloys: modeling and engineering applications. Springer, New York Lagoudas D (2008) Shape memory alloys: modeling and engineering applications. Springer, New York
3.
4.
Zurück zum Zitat Evangelista V, Marfia S, Sacco E (2010) A 3D SMA constitutive model in the framework of finite strain. Int J Numer Methods Eng 81(6):761–785. doi:10.1002/nme.2717 Evangelista V, Marfia S, Sacco E (2010) A 3D SMA constitutive model in the framework of finite strain. Int J Numer Methods Eng 81(6):761–785. doi:10.​1002/​nme.​2717
5.
Zurück zum Zitat Arghavani J, Auricchio F, Naghdabadi R (2011) A finite strain kinematic hardening constitutive model based on Hencky strain: general framework, solution algorithm and application to shape memory alloys. Int J Plast 27(6):940–961. doi:10.1016/j.ijplas.2010.10.006 Arghavani J, Auricchio F, Naghdabadi R (2011) A finite strain kinematic hardening constitutive model based on Hencky strain: general framework, solution algorithm and application to shape memory alloys. Int J Plast 27(6):940–961. doi:10.​1016/​j.​ijplas.​2010.​10.​006
6.
Zurück zum Zitat Arghavani J, Auricchio F, Naghdabadi R, Reali A (2011) An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys. Finite Elem Anal Des 47(2):166–174. doi:10.1016/j.finel.2010.09.001 Arghavani J, Auricchio F, Naghdabadi R, Reali A (2011) An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys. Finite Elem Anal Des 47(2):166–174. doi:10.​1016/​j.​finel.​2010.​09.​001
7.
Zurück zum Zitat Teeriaho J-P (2013) An extension of a shape memory alloy model for large deformations based on an exactly integrable Eulerian rate formulation with changing elastic properties. Int J Plast 43:153–176. doi:10.1016/j.ijplas.2012.11.009 Teeriaho J-P (2013) An extension of a shape memory alloy model for large deformations based on an exactly integrable Eulerian rate formulation with changing elastic properties. Int J Plast 43:153–176. doi:10.​1016/​j.​ijplas.​2012.​11.​009
8.
Zurück zum Zitat Marfia S, Sacco E (2007) Analysis of SMA composite laminates using a multiscale modelling technique. Int J Numer Methods Eng 70(10):1182–1208. doi:10.1002/nme.1916 Marfia S, Sacco E (2007) Analysis of SMA composite laminates using a multiscale modelling technique. Int J Numer Methods Eng 70(10):1182–1208. doi:10.​1002/​nme.​1916
10.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2009) Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys. Smart Mater Struct 18(10):104017. doi:10.1088/0964-1726/18/10/104017 Hartl DJ, Lagoudas DC (2009) Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys. Smart Mater Struct 18(10):104017. doi:10.​1088/​0964-1726/​18/​10/​104017
11.
Zurück zum Zitat Boyd J, Lagoudas D (1996) A thermodynamic constitutive model for the shape memory alloy materials. Part I The monolithic shape memory alloy. Int J Plast 12(6):805–842. doi:10.1016/S0749-6419(96)00030-7 Boyd J, Lagoudas D (1996) A thermodynamic constitutive model for the shape memory alloy materials. Part I The monolithic shape memory alloy. Int J Plast 12(6):805–842. doi:10.​1016/​S0749-6419(96)00030-7
12.
13.
Zurück zum Zitat Auricchio F, Petrini L (2004) A three dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Methods Eng 61(6):807–836. doi:10.1002/nme.1086 Auricchio F, Petrini L (2004) A three dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Methods Eng 61(6):807–836. doi:10.​1002/​nme.​1086
14.
Zurück zum Zitat Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape-memory alloy materials. Comput Mech 44(3):405–421. doi:10.1007/s00466-009-0381-8 Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape-memory alloy materials. Comput Mech 44(3):405–421. doi:10.​1007/​s00466-009-0381-8
16.
17.
Zurück zum Zitat Rankin CC (2006) Application of linear finite elements to finite strain using corotation. In: AIAA paper No. AIAA-2006-1751, 47th AIAA/ASME/ASCE/ASC structures, structural dynamics, and materials conference. Newport, Rhode Island Rankin CC (2006) Application of linear finite elements to finite strain using corotation. In: AIAA paper No. AIAA-2006-1751, 47th AIAA/ASME/ASCE/ASC structures, structural dynamics, and materials conference. Newport, Rhode Island
20.
21.
22.
Zurück zum Zitat Alsafadie R, Battini J-M, Somja H, Hjiaj M (2011) Local formulation for elasto-plastic corotational thin-walled beams based on higher-order curvature terms. Finite Elem Anal Des 47(2):119–128. doi:10.1016/j.finel.2010.08.006 Alsafadie R, Battini J-M, Somja H, Hjiaj M (2011) Local formulation for elasto-plastic corotational thin-walled beams based on higher-order curvature terms. Finite Elem Anal Des 47(2):119–128. doi:10.​1016/​j.​finel.​2010.​08.​006
23.
Zurück zum Zitat Mostafa M, Sivaselvan MV, Felippa CA (2013) Reusing linear finite elements in material and geometrically nonlinear analysis—Application to plane stress problems. Finite Elem Anal Des 69:62–72. doi:10.1016/j.finel.2013.02.002 Mostafa M, Sivaselvan MV, Felippa CA (2013) Reusing linear finite elements in material and geometrically nonlinear analysis—Application to plane stress problems. Finite Elem Anal Des 69:62–72. doi:10.​1016/​j.​finel.​2013.​02.​002
25.
26.
Zurück zum Zitat de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, ChichesterCrossRef de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, ChichesterCrossRef
27.
Zurück zum Zitat Spurrier RA (1978) Comment on “singularity-free extraction of a quaternion from a direction-cosine matrix”. J Spacecr Rockets 15(4):255–255. doi:10.2514/3.57311 CrossRef Spurrier RA (1978) Comment on “singularity-free extraction of a quaternion from a direction-cosine matrix”. J Spacecr Rockets 15(4):255–255. doi:10.​2514/​3.​57311 CrossRef
29.
30.
Zurück zum Zitat Jeyachandrabose C, Kirkhope J, Ramesh Babu C (1985) An alternate explicit formulation for the DKT plate-bending element. Int J Numer Methods Eng 21(7):1289–1293. doi:10.1002/nme.1620210709 Jeyachandrabose C, Kirkhope J, Ramesh Babu C (1985) An alternate explicit formulation for the DKT plate-bending element. Int J Numer Methods Eng 21(7):1289–1293. doi:10.​1002/​nme.​1620210709
Metadaten
Titel
A new SMA shell element based on the corotational formulation
verfasst von
P. Bisegna
F. Caselli
S. Marfia
E. Sacco
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2014
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-1061-x

Weitere Artikel der Ausgabe 5/2014

Computational Mechanics 5/2014 Zur Ausgabe

Neuer Inhalt