Skip to main content
Erschienen in: Computational Mechanics 3/2017

29.11.2016 | Original Paper

Simulation of mechanisms modeled by geometrically-exact beams using Rodrigues rotation parameters

verfasst von: Alfredo Gay Neto

Erschienen in: Computational Mechanics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present mathematical models for joints, springs, dashpots and follower loads, to be used together with geometrically-exact beam finite elements to simulate mechanisms. The rotations are described using Rodrigues parameters. An updated-Lagrangian approach is employed, leading to the possibility of finite rotations involving many turns, overcoming possible singularities in the rotation tensor. We present formulations for spherical, hinge and universal (Cardan) joints, which are enforced by Lagrange multipliers. For the hinge joint, a torsional spring with a nonlinear damper model is presented. A geometric-nonlinear translational spring/dashpot model is proposed, such as follower loads. All formulations are presented detailing their contribution to the model weak form and tangent operator. These are employed together with implicit time-integration schemes. Numerical examples are performed, showing that the proposed formulations are able to model complex spatial mechanisms. Usage of the models together with contact interaction between beams is explored by a cam/follower mechanism example.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New YorkMATH Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New YorkMATH
2.
Zurück zum Zitat Sclater N, Chironis NP (2007) Mechanisms and mechanical devices sourcebook, 4th edn. McGraw-Hill, New York Sclater N, Chironis NP (2007) Mechanisms and mechanical devices sourcebook, 4th edn. McGraw-Hill, New York
4.
Zurück zum Zitat Schiehlen W, Guse N, Seifried R (2006) Multibody dynamics in computational mechanics and engineering applications. Comput Methods Appl Mech Eng 195:5509–5522MathSciNetCrossRefMATH Schiehlen W, Guse N, Seifried R (2006) Multibody dynamics in computational mechanics and engineering applications. Comput Methods Appl Mech Eng 195:5509–5522MathSciNetCrossRefMATH
5.
Zurück zum Zitat Shabana A (1998) Dynamics of multibody systems. Cambridge University Press, CambridgeMATH Shabana A (1998) Dynamics of multibody systems. Cambridge University Press, CambridgeMATH
6.
7.
Zurück zum Zitat Ider SK, Amirouche FML (1990) Stability analysis of constrained multibody systems. Comput Mech 6:327–340CrossRefMATH Ider SK, Amirouche FML (1990) Stability analysis of constrained multibody systems. Comput Mech 6:327–340CrossRefMATH
8.
Zurück zum Zitat Park KC, Felippa CA, Gumaste UA (2000) A localized version of the method of Lagrange multipliers and its applications. Comput Mech 24:476–490CrossRefMATH Park KC, Felippa CA, Gumaste UA (2000) A localized version of the method of Lagrange multipliers and its applications. Comput Mech 24:476–490CrossRefMATH
9.
Zurück zum Zitat Geradin M, Cardona A (1989) Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra. Comput Mech 4:115–135CrossRefMATH Geradin M, Cardona A (1989) Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra. Comput Mech 4:115–135CrossRefMATH
10.
Zurück zum Zitat Cardona A, Geradin M, Doan DB (1991) Rigid and flexible joint modelling in multibody dynamics using finite elements. Comput Methods Appl Mech Eng 89:395–418CrossRef Cardona A, Geradin M, Doan DB (1991) Rigid and flexible joint modelling in multibody dynamics using finite elements. Comput Methods Appl Mech Eng 89:395–418CrossRef
11.
Zurück zum Zitat Ibrahimbegovic A, Taylor RL, Lim H (2003) Non-linear dynamics of flexible multibody systems. Comput Struct 81:1113–1132CrossRef Ibrahimbegovic A, Taylor RL, Lim H (2003) Non-linear dynamics of flexible multibody systems. Comput Struct 81:1113–1132CrossRef
12.
Zurück zum Zitat Bauchau OA, Damilano G, Theron NJ (1995) Numerical integration of non-linear elastic muti-body systems. Int J Num Methods Eng V 38:2727–2751CrossRefMATH Bauchau OA, Damilano G, Theron NJ (1995) Numerical integration of non-linear elastic muti-body systems. Int J Num Methods Eng V 38:2727–2751CrossRefMATH
13.
Zurück zum Zitat Ibrahimbegovic A, Mamouri S (2000) On rigid components and joint constraints in nonlinear dynamics of flexible multibody systems employing 3D geometrically exact beam model. Comput Methods Appl Mech Eng 188:805–831CrossRefMATH Ibrahimbegovic A, Mamouri S (2000) On rigid components and joint constraints in nonlinear dynamics of flexible multibody systems employing 3D geometrically exact beam model. Comput Methods Appl Mech Eng 188:805–831CrossRefMATH
14.
Zurück zum Zitat Ibrahimbegovic A, Mamouri S (2002) “Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations. Comput Methods Appl Mech Eng 191:4241–4258CrossRefMATH Ibrahimbegovic A, Mamouri S (2002) “Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations. Comput Methods Appl Mech Eng 191:4241–4258CrossRefMATH
15.
Zurück zum Zitat Bauchau OA (2000) On the modeling of prismatic joints in flexible multi-body systems. Comput Methods Appl Mech Eng 181:87–105CrossRefMATH Bauchau OA (2000) On the modeling of prismatic joints in flexible multi-body systems. Comput Methods Appl Mech Eng 181:87–105CrossRefMATH
16.
Zurück zum Zitat Jelenic G, Crisfield MA (2001) Dynamic analysis of 3D beams with joints in presence of large rotations. Comput Methods Appl Mech Eng 190:4195–4230CrossRefMATH Jelenic G, Crisfield MA (2001) Dynamic analysis of 3D beams with joints in presence of large rotations. Comput Methods Appl Mech Eng 190:4195–4230CrossRefMATH
17.
Zurück zum Zitat Bauchau OA, Rodriguez J (2002) Modeling of joints with clearance in flexible multibody systems. Int J Solids Struct 39:41–63CrossRefMATH Bauchau OA, Rodriguez J (2002) Modeling of joints with clearance in flexible multibody systems. Int J Solids Struct 39:41–63CrossRefMATH
18.
Zurück zum Zitat Flores P, Ambrósio J, Claro JCP, Lankarani HM (2008) Kinematics and dynamics of multibody systems with imperfect joints. Lecture notes in applied and computacional mechanics V. Springer, p 34 Flores P, Ambrósio J, Claro JCP, Lankarani HM (2008) Kinematics and dynamics of multibody systems with imperfect joints. Lecture notes in applied and computacional mechanics V. Springer, p 34
19.
Zurück zum Zitat Betsch P, Steinmann P (2003) Constrained dynamics of geometrically exact beams. Comput Mech 31:49–59CrossRefMATH Betsch P, Steinmann P (2003) Constrained dynamics of geometrically exact beams. Comput Mech 31:49–59CrossRefMATH
20.
Zurück zum Zitat Tian Q, Zhang Y, Chen L, Flores P (2009) Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput Struct 87:913–929CrossRef Tian Q, Zhang Y, Chen L, Flores P (2009) Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput Struct 87:913–929CrossRef
21.
Zurück zum Zitat Gay Neto A, Martins CA, Pimenta PM (2014) Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact. Comput Mech 53:125–145MathSciNetCrossRefMATH Gay Neto A, Martins CA, Pimenta PM (2014) Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact. Comput Mech 53:125–145MathSciNetCrossRefMATH
22.
Zurück zum Zitat Gay Neto A (2016) Dynamics of offshore risers using a geometrically-exact beam model with hydrodynamic loads and contact with the seabed. Eng Struct 125:438–454CrossRef Gay Neto A (2016) Dynamics of offshore risers using a geometrically-exact beam model with hydrodynamic loads and contact with the seabed. Eng Struct 125:438–454CrossRef
23.
Zurück zum Zitat Gay Neto A, Pimenta PM, Wriggers P (2015) Self-contact modeling on beams experiencing loop formation. Comput Mech 55(1):193–208MathSciNetCrossRefMATH Gay Neto A, Pimenta PM, Wriggers P (2015) Self-contact modeling on beams experiencing loop formation. Comput Mech 55(1):193–208MathSciNetCrossRefMATH
24.
Zurück zum Zitat Gay Neto A, Pimenta PM, Wriggers P (2016) A master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429MathSciNetCrossRef Gay Neto A, Pimenta PM, Wriggers P (2016) A master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429MathSciNetCrossRef
25.
Zurück zum Zitat Gay Neto A, Pimenta PM, Wriggers P (2014) Contact between rolling beams and flat surfaces. Int J Numer Methods Eng 97:683–706MathSciNetCrossRefMATH Gay Neto A, Pimenta PM, Wriggers P (2014) Contact between rolling beams and flat surfaces. Int J Numer Methods Eng 97:683–706MathSciNetCrossRefMATH
26.
Zurück zum Zitat Pimenta PM, Campello EMB (2001) Geometrically nonlinear analysis of thin-walled space frames. Proceedings of the second european conference on computational mechanics, II ECCM, Krakow Pimenta PM, Campello EMB (2001) Geometrically nonlinear analysis of thin-walled space frames. Proceedings of the second european conference on computational mechanics, II ECCM, Krakow
27.
Zurück zum Zitat Pimenta PM, Campello EMB, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational dof’s and general hyperelasticity. part 1: Rods. Comput Mech 42:715–732MathSciNetCrossRefMATH Pimenta PM, Campello EMB, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational dof’s and general hyperelasticity. part 1: Rods. Comput Mech 42:715–732MathSciNetCrossRefMATH
28.
Zurück zum Zitat Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: a classification of concepts with applications to smooth shells. Comput Methods Appl Mech Eng 155:273–305MathSciNetCrossRefMATH Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: a classification of concepts with applications to smooth shells. Comput Methods Appl Mech Eng 155:273–305MathSciNetCrossRefMATH
29.
Zurück zum Zitat Campello EMB, Pimenta PM, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational dofs and general hyperelasticity. Part 2: Shells. Comput Mech 48:195–211MathSciNetCrossRefMATH Campello EMB, Pimenta PM, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational dofs and general hyperelasticity. Part 2: Shells. Comput Mech 48:195–211MathSciNetCrossRefMATH
30.
Zurück zum Zitat Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31:505–518CrossRefMATH Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31:505–518CrossRefMATH
31.
Zurück zum Zitat Ota NSN, Wilson L, Gay Neto A, Pellegrino S, Pimenta PM (2016) Nonlinear dynamic analysis of creased shells. Finite Elem Anal Des 121:64–74MathSciNetCrossRef Ota NSN, Wilson L, Gay Neto A, Pellegrino S, Pimenta PM (2016) Nonlinear dynamic analysis of creased shells. Finite Elem Anal Des 121:64–74MathSciNetCrossRef
32.
Zurück zum Zitat Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH
33.
Zurück zum Zitat Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327CrossRef Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327CrossRef
34.
Zurück zum Zitat Korelc J (1997) Automatic generation of finite-element code by simultaneous optimization of expressions. Theor Comput Sci 187:231–248CrossRefMATH Korelc J (1997) Automatic generation of finite-element code by simultaneous optimization of expressions. Theor Comput Sci 187:231–248CrossRefMATH
35.
Zurück zum Zitat Gay Neto A, Campello EMB (2016) Granular materials interacting with thin flexible rods. Comput Part Mech (published online) Gay Neto A, Campello EMB (2016) Granular materials interacting with thin flexible rods. Comput Part Mech (published online)
37.
Zurück zum Zitat Gams M, Planinc I, Saje M (2007) Energy conserving time integration scheme for geometrically exact beam. Comput Methods Appl Mech Eng 196:2117–2129MathSciNetCrossRefMATH Gams M, Planinc I, Saje M (2007) Energy conserving time integration scheme for geometrically exact beam. Comput Methods Appl Mech Eng 196:2117–2129MathSciNetCrossRefMATH
39.
Zurück zum Zitat Cardona A, Geradin M (1989) Time integration of the equations of motion in mechanism analysis. Comput Struct 33(3):801–820CrossRefMATH Cardona A, Geradin M (1989) Time integration of the equations of motion in mechanism analysis. Comput Struct 33(3):801–820CrossRefMATH
40.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375MathSciNetCrossRefMATH Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375MathSciNetCrossRefMATH
41.
Zurück zum Zitat Gransden DI, Bornemann PB, Rose M, Nitzsche F (2015) A constrained generalized-\(\alpha \) method for coupling rigid parallel chain kinematics and elastic bodies. Comput Mech 55:527–541MathSciNetCrossRefMATH Gransden DI, Bornemann PB, Rose M, Nitzsche F (2015) A constrained generalized-\(\alpha \) method for coupling rigid parallel chain kinematics and elastic bodies. Comput Mech 55:527–541MathSciNetCrossRefMATH
Metadaten
Titel
Simulation of mechanisms modeled by geometrically-exact beams using Rodrigues rotation parameters
verfasst von
Alfredo Gay Neto
Publikationsdatum
29.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 3/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1355-2

Weitere Artikel der Ausgabe 3/2017

Computational Mechanics 3/2017 Zur Ausgabe

Neuer Inhalt