Skip to main content
Erschienen in: Computational Mechanics 1/2017

20.03.2017 | Original Paper

Phoretic motion of soft vesicles and droplets: an XFEM/particle-based numerical solution

verfasst von: Tong Shen, Franck Vernerey

Erschienen in: Computational Mechanics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When immersed in solution, surface-active particles interact with solute molecules and migrate along gradients of solute concentration. Depending on the conditions, this phenomenon could arise from either diffusiophoresis or the Marangoni effect, both of which involve strong interactions between the fluid and the particle surface. We introduce here a numerical approach that can accurately capture these interactions, and thus provide an efficient tool to understand and characterize the phoresis of soft particles. The model is based on a combination of the extended finite element—that enable the consideration of various discontinuities across the particle surface—and the particle-based moving interface method—that is used to measure and update the interface deformation in time. In addition to validating the approach with analytical solutions, the model is used to study the motion of deformable vesicles in solutions with spatial variations in both solute concentration and temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Orig Invest 26(1):57–64 Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Orig Invest 26(1):57–64
2.
Zurück zum Zitat Krystal H (2015) Integration and self healing: Affect trauma, alexithymia. Routledge, Abingdon Krystal H (2015) Integration and self healing: Affect trauma, alexithymia. Routledge, Abingdon
3.
Zurück zum Zitat Ebbens SJ, Howse JR (2010) In pursuit of propulsion at the nanoscale. Soft Matter 6(4):726–738CrossRef Ebbens SJ, Howse JR (2010) In pursuit of propulsion at the nanoscale. Soft Matter 6(4):726–738CrossRef
4.
Zurück zum Zitat Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer KS, Granick S (2010) Janus particle synthesis and assembly. Adv Mater 22(10):1060–1071CrossRef Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer KS, Granick S (2010) Janus particle synthesis and assembly. Adv Mater 22(10):1060–1071CrossRef
5.
Zurück zum Zitat Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. J Fluid Mech 6(03):350–356CrossRefMATH Young NO, Goldstein JS, Block MJ (1959) The motion of bubbles in a vertical temperature gradient. J Fluid Mech 6(03):350–356CrossRefMATH
6.
Zurück zum Zitat Derjaguin BV, Sidorenkov GP, Zubashchenkov EA, Kiseleva EV (1947) Kinetic phenomena in boundary films of liquids. Kolloidn. Zh 9:335–347 Derjaguin BV, Sidorenkov GP, Zubashchenkov EA, Kiseleva EV (1947) Kinetic phenomena in boundary films of liquids. Kolloidn. Zh 9:335–347
7.
Zurück zum Zitat Lin MMJ, Prieve DC (1983) Electromigration of latex induced by a salt gradient. J Colloid Interface Sci 95(2):327–339CrossRef Lin MMJ, Prieve DC (1983) Electromigration of latex induced by a salt gradient. J Colloid Interface Sci 95(2):327–339CrossRef
8.
Zurück zum Zitat Lechnick WJ, Shaeiwitz JA (1984) Measurement of diffusiophoresis in liquids. J Colloid Interface Sci 102(1):71–87CrossRef Lechnick WJ, Shaeiwitz JA (1984) Measurement of diffusiophoresis in liquids. J Colloid Interface Sci 102(1):71–87CrossRef
9.
Zurück zum Zitat Anderson JL (1989) Colloid transport by interfacial forces. Ann Rev Fluid Mech 21(1):61–99CrossRefMATH Anderson JL (1989) Colloid transport by interfacial forces. Ann Rev Fluid Mech 21(1):61–99CrossRefMATH
10.
Zurück zum Zitat Brady JF (2011) Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J Fluid Mech 667:216–259MathSciNetCrossRefMATH Brady JF (2011) Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J Fluid Mech 667:216–259MathSciNetCrossRefMATH
11.
Zurück zum Zitat Jlicher F, Prost J (2009) Generic theory of colloidal transport. Eur Phys J E 29(1):27–36CrossRef Jlicher F, Prost J (2009) Generic theory of colloidal transport. Eur Phys J E 29(1):27–36CrossRef
12.
Zurück zum Zitat Michelin S, Lauga E, Bartolo D (2013) Spontaneous autophoretic motion of isotropic particles. Phys Fluids ( 1994-present) 25(6):061701 Michelin S, Lauga E, Bartolo D (2013) Spontaneous autophoretic motion of isotropic particles. Phys Fluids ( 1994-present) 25(6):061701
13.
Zurück zum Zitat Keh HJ, Weng JC (2001) Diffusiophoresis of colloidal spheres in nonelectrolyte gradients at small but finite Pclet numbers. Colloid Polym Sci 279(4):305–311CrossRef Keh HJ, Weng JC (2001) Diffusiophoresis of colloidal spheres in nonelectrolyte gradients at small but finite Pclet numbers. Colloid Polym Sci 279(4):305–311CrossRef
14.
Zurück zum Zitat Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88(2):1143–1155CrossRef Riske KA, Dimova R (2005) Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J 88(2):1143–1155CrossRef
15.
Zurück zum Zitat Glaser N, Adams DJ, Böker A, Krausch G (2006) Janus particles at liquid–liquid interfaces. Langmuir 22(12):5227–5229CrossRef Glaser N, Adams DJ, Böker A, Krausch G (2006) Janus particles at liquid–liquid interfaces. Langmuir 22(12):5227–5229CrossRef
16.
Zurück zum Zitat Shin S, Um E, Sabass B, Ault JT, Rahimi M, Warren PB, Stone HA (2016) Size-dependent control of colloid transport via solute gradients in dead-end channels. PNAS 113:257–261CrossRef Shin S, Um E, Sabass B, Ault JT, Rahimi M, Warren PB, Stone HA (2016) Size-dependent control of colloid transport via solute gradients in dead-end channels. PNAS 113:257–261CrossRef
17.
Zurück zum Zitat Benet E, Vernerey FJ (2016) Mechanics and stability of vesicles and droplets in confined spaces. Phys Rev E 94(6):062613CrossRef Benet E, Vernerey FJ (2016) Mechanics and stability of vesicles and droplets in confined spaces. Phys Rev E 94(6):062613CrossRef
18.
Zurück zum Zitat Kreissl P, Holm C, de Graaf J (2016) The efficiency of self-phoretic propulsion mechanisms with surface reaction heterogeneity. J Chem Phys. doi:10.1063/1.4951699 Kreissl P, Holm C, de Graaf J (2016) The efficiency of self-phoretic propulsion mechanisms with surface reaction heterogeneity. J Chem Phys. doi:10.​1063/​1.​4951699
19.
Zurück zum Zitat Khair AS (2013) Diffusiophoresis of colloidal particles in neutral solute gradients at finite Peclet number. J Fluid Mech 731:64–94MathSciNetCrossRefMATH Khair AS (2013) Diffusiophoresis of colloidal particles in neutral solute gradients at finite Peclet number. J Fluid Mech 731:64–94MathSciNetCrossRefMATH
20.
Zurück zum Zitat Gupta S, Sreeja KK, Thakur S (2015) Autonomous movement of a chemically powered vesicle. Phys Rev E 92(4):42703CrossRef Gupta S, Sreeja KK, Thakur S (2015) Autonomous movement of a chemically powered vesicle. Phys Rev E 92(4):42703CrossRef
21.
Zurück zum Zitat Ferziger JH, Peric M (2012) Computational methods for fluid dynamics. Springer Science and Business Media, BerlinMATH Ferziger JH, Peric M (2012) Computational methods for fluid dynamics. Springer Science and Business Media, BerlinMATH
26.
Zurück zum Zitat Liu WK et al (2006) Immersed finite element method and its applications to biological systems. Comput Methods Appl Mech Eng 195.13:1722–1749MathSciNetCrossRefMATH Liu WK et al (2006) Immersed finite element method and its applications to biological systems. Comput Methods Appl Mech Eng 195.13:1722–1749MathSciNetCrossRefMATH
27.
Zurück zum Zitat Liu WK, Tang S (2007) Mathematical foundations of the immersed finite element method. Comput Mech 39.3:211–222MathSciNetMATH Liu WK, Tang S (2007) Mathematical foundations of the immersed finite element method. Comput Mech 39.3:211–222MathSciNetMATH
28.
Zurück zum Zitat Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794MathSciNetCrossRefMATH Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794MathSciNetCrossRefMATH
29.
Zurück zum Zitat Glowinski R, Pan TW, Hesla TI, Joseph DD, Periaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169(2):363–426MathSciNetCrossRefMATH Glowinski R, Pan TW, Hesla TI, Joseph DD, Periaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169(2):363–426MathSciNetCrossRefMATH
30.
Zurück zum Zitat Cottet GH, Maitre E (2006) A level set method for fluid-structure interactions with immersed surfaces. Math Models Methods Appl Sci 16(03):415–438MathSciNetCrossRefMATH Cottet GH, Maitre E (2006) A level set method for fluid-structure interactions with immersed surfaces. Math Models Methods Appl Sci 16(03):415–438MathSciNetCrossRefMATH
31.
Zurück zum Zitat Hou TY, Lowengrub JS, Shelley MJ (2001) Boundary integral methods for multicomponent fluids and multiphase materials. J Comput Phys 169(2):302–362MathSciNetCrossRefMATH Hou TY, Lowengrub JS, Shelley MJ (2001) Boundary integral methods for multicomponent fluids and multiphase materials. J Comput Phys 169(2):302–362MathSciNetCrossRefMATH
32.
Zurück zum Zitat Bazhlekov IB, Anderson PD, Meijer HEH (2004) Nonsingular boundary integral method for deformable drops in viscous flows. Phys Fluids (1994-Present) 16(4):1064–1081MathSciNetCrossRefMATH Bazhlekov IB, Anderson PD, Meijer HEH (2004) Nonsingular boundary integral method for deformable drops in viscous flows. Phys Fluids (1994-Present) 16(4):1064–1081MathSciNetCrossRefMATH
33.
Zurück zum Zitat Hyvaluoma J, Harting J (2008) Slip flow over structured surfaces with entrapped microbubbles. Phys Rev Lett 100(24):246001CrossRef Hyvaluoma J, Harting J (2008) Slip flow over structured surfaces with entrapped microbubbles. Phys Rev Lett 100(24):246001CrossRef
34.
Zurück zum Zitat Debye P, Robert LC (1959) Flow of liquid hydrocarbons in porous Vycor. J Appl Phys 30(6):843–849CrossRef Debye P, Robert LC (1959) Flow of liquid hydrocarbons in porous Vycor. J Appl Phys 30(6):843–849CrossRef
35.
Zurück zum Zitat Joseph P et al (2006) Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys Rev Lett 97.15:156104CrossRef Joseph P et al (2006) Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys Rev Lett 97.15:156104CrossRef
36.
Zurück zum Zitat Ho TA et al (2011) Liquid water can slip on a hydrophilic surface. Proc Natl Acad Sci 108.39:16170–16175CrossRef Ho TA et al (2011) Liquid water can slip on a hydrophilic surface. Proc Natl Acad Sci 108.39:16170–16175CrossRef
37.
Zurück zum Zitat Foucard L, Vernerey FJ (2016) A particle based moving interface method (PMIM) for modeling the large deformation of boundaries in soft matter systems. Int J Numer Methods Eng. doi:10.1002/nme.5191 Foucard L, Vernerey FJ (2016) A particle based moving interface method (PMIM) for modeling the large deformation of boundaries in soft matter systems. Int J Numer Methods Eng. doi:10.​1002/​nme.​5191
38.
Zurück zum Zitat Foucard LC, Pellegrino J, Vernerey FJ (2014) Particle-based moving interface method for the study of the interaction between soft colloid particles and immersed fibrous network. Comput Model Eng Sci 98(1):101–127MathSciNetMATH Foucard LC, Pellegrino J, Vernerey FJ (2014) Particle-based moving interface method for the study of the interaction between soft colloid particles and immersed fibrous network. Comput Model Eng Sci 98(1):101–127MathSciNetMATH
39.
Zurück zum Zitat Vernerey FJ, Farsad M (2011) An Eulerian/XFEM formulation for the large deformation of cortical cell membrane. Comput Methods Biomech Biomed Eng 14(05):433–445CrossRef Vernerey FJ, Farsad M (2011) An Eulerian/XFEM formulation for the large deformation of cortical cell membrane. Comput Methods Biomech Biomed Eng 14(05):433–445CrossRef
40.
Zurück zum Zitat Vernerey FJ, Farsad M (2011) A constrained mixture approach to mechano-sensing and force generation in contractile cells. J Mech Behav Biomed Mater 4(8):1683–1699CrossRef Vernerey FJ, Farsad M (2011) A constrained mixture approach to mechano-sensing and force generation in contractile cells. J Mech Behav Biomed Mater 4(8):1683–1699CrossRef
41.
Zurück zum Zitat Farsad M, Vernerey FJ (2012) An XFEM? Based numerical strategy to model mechanical interactions between biological cells and a deformable substrate. Int J Numer Methods Eng 92(3):238–267MathSciNetCrossRefMATH Farsad M, Vernerey FJ (2012) An XFEM? Based numerical strategy to model mechanical interactions between biological cells and a deformable substrate. Int J Numer Methods Eng 92(3):238–267MathSciNetCrossRefMATH
42.
Zurück zum Zitat Kabiri Mi, Vernerey FJ (2013) An xfem based multiscale approach to fracture of heterogeneous media. Int J Multiscale Comput Eng 11(6) Kabiri Mi, Vernerey FJ (2013) An xfem based multiscale approach to fracture of heterogeneous media. Int J Multiscale Comput Eng 11(6)
43.
Zurück zum Zitat Vernerey FJ, Farsad M (2014) A mathematical model of the coupled mechanisms of cell adhesion, contraction and spreading. J Math Biol 68(4):989–1022MathSciNetCrossRefMATH Vernerey FJ, Farsad M (2014) A mathematical model of the coupled mechanisms of cell adhesion, contraction and spreading. J Math Biol 68(4):989–1022MathSciNetCrossRefMATH
44.
Zurück zum Zitat Farsad M, Vernerey FJ, Park HS (2010) An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int J Numer Methods Eng 84(12):1466–1489MathSciNetCrossRefMATH Farsad M, Vernerey FJ, Park HS (2010) An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int J Numer Methods Eng 84(12):1466–1489MathSciNetCrossRefMATH
45.
Zurück zum Zitat Vernerey FJ (2011) A theoretical treatment on the mechanics of interfaces in deformable porous media. Int J Solids Struct 48(22):3129–3141CrossRef Vernerey FJ (2011) A theoretical treatment on the mechanics of interfaces in deformable porous media. Int J Solids Struct 48(22):3129–3141CrossRef
46.
Zurück zum Zitat Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87CrossRef Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87CrossRef
47.
Zurück zum Zitat Anderson JL, Prieve DC (1991) Diffusiophoresis caused by gradients of strongly adsorbing solutes. Langmuir 7(2):403–406CrossRef Anderson JL, Prieve DC (1991) Diffusiophoresis caused by gradients of strongly adsorbing solutes. Langmuir 7(2):403–406CrossRef
48.
Zurück zum Zitat Golestanian R, Liverpool TB, Ajdari A (2005) Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys Rev Lett 94(22):220801CrossRef Golestanian R, Liverpool TB, Ajdari A (2005) Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys Rev Lett 94(22):220801CrossRef
49.
Zurück zum Zitat Anderson JL, Prieve DC (1984) Diffusiophoresis: migration of colloidal particles in gradients of solute concentration. Sep Purif Methods 13(1):67–103CrossRef Anderson JL, Prieve DC (1984) Diffusiophoresis: migration of colloidal particles in gradients of solute concentration. Sep Purif Methods 13(1):67–103CrossRef
50.
Zurück zum Zitat Fanton X, Cazabat AM (1998) Spreading and instabilities induced by a solutal Marangoni effect. Langmuir 14(9):2554–2561 ChicagoCrossRef Fanton X, Cazabat AM (1998) Spreading and instabilities induced by a solutal Marangoni effect. Langmuir 14(9):2554–2561 ChicagoCrossRef
51.
Zurück zum Zitat Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833CrossRef Moes N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833CrossRef
52.
Zurück zum Zitat Sukumar N, Chopp DL, Moes N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200MathSciNetCrossRefMATH Sukumar N, Chopp DL, Moes N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200MathSciNetCrossRefMATH
53.
Zurück zum Zitat Moes N, Bechet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Methods Eng 67(12):1641–1669MathSciNetCrossRefMATH Moes N, Bechet E, Tourbier M (2006) Imposing Dirichlet boundary conditions in the extended finite element method. Int J Numer Methods Eng 67(12):1641–1669MathSciNetCrossRefMATH
55.
Zurück zum Zitat Gilbert JR, Moler C, Schreiber R (1992) Sparse matrices in MATLAB: design and implementation. SIAM J Matrix Anal Appl 13(1):333–356MathSciNetCrossRefMATH Gilbert JR, Moler C, Schreiber R (1992) Sparse matrices in MATLAB: design and implementation. SIAM J Matrix Anal Appl 13(1):333–356MathSciNetCrossRefMATH
56.
Zurück zum Zitat Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall, Englewood Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall, Englewood
57.
Zurück zum Zitat Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MathSciNetMATH Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304MathSciNetMATH
58.
59.
Zurück zum Zitat Bechet E et al (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64.8:1033–1056CrossRefMATH Bechet E et al (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64.8:1033–1056CrossRefMATH
60.
Zurück zum Zitat Foucard L, Aryal A, Duddu R, Vernerey F (2015) A coupled Eulerian–Lagrangian extended finite element formulation for simulating large deformations in hyperelastic media with moving free boundaries. Comput Methods Appl Mech Eng 283:280–302MathSciNetCrossRef Foucard L, Aryal A, Duddu R, Vernerey F (2015) A coupled Eulerian–Lagrangian extended finite element formulation for simulating large deformations in hyperelastic media with moving free boundaries. Comput Methods Appl Mech Eng 283:280–302MathSciNetCrossRef
61.
Zurück zum Zitat Leung S, Lowengrub J, Zhao H (2011) A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J Comput Phys 230(7):2540–2561MathSciNetCrossRefMATH Leung S, Lowengrub J, Zhao H (2011) A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J Comput Phys 230(7):2540–2561MathSciNetCrossRefMATH
62.
Zurück zum Zitat Rusanov AI, Prokhorov VA (1996) Interfacial tensiometry, vol 3. Elsevier, LondonCrossRef Rusanov AI, Prokhorov VA (1996) Interfacial tensiometry, vol 3. Elsevier, LondonCrossRef
63.
64.
Zurück zum Zitat Chen PY, Keh HJ (2003) Boundary effects on osmophoresis: motion of a spherical vesicle parallel to two plane walls. Chem Eng Sci 58(19):4449–4464CrossRef Chen PY, Keh HJ (2003) Boundary effects on osmophoresis: motion of a spherical vesicle parallel to two plane walls. Chem Eng Sci 58(19):4449–4464CrossRef
65.
Zurück zum Zitat Michelin S, Lauga E (2010) Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. Phys Fluids (1994-present) 22(11):111901CrossRef Michelin S, Lauga E (2010) Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. Phys Fluids (1994-present) 22(11):111901CrossRef
66.
Zurück zum Zitat Akalp U et al (2015) Determination of the polymer-solvent interaction parameter for PEG hydrogels in water: Application of a self learning algorithm. Polymer 66:135–147CrossRef Akalp U et al (2015) Determination of the polymer-solvent interaction parameter for PEG hydrogels in water: Application of a self learning algorithm. Polymer 66:135–147CrossRef
67.
Zurück zum Zitat Foucard LC, Vernerey FJ (2015) An X-FEM based numerical asymptotic expansion for simulating a stokes flow near a sharp corner. Int J Numer Methods Eng 102(2):79–98MathSciNetCrossRefMATH Foucard LC, Vernerey FJ (2015) An X-FEM based numerical asymptotic expansion for simulating a stokes flow near a sharp corner. Int J Numer Methods Eng 102(2):79–98MathSciNetCrossRefMATH
68.
Zurück zum Zitat Linke GT, Lipowsky R, Gruhn T (2006) Osmotically induced passage of vesicles through narrow pores. EPL 74(5):916CrossRef Linke GT, Lipowsky R, Gruhn T (2006) Osmotically induced passage of vesicles through narrow pores. EPL 74(5):916CrossRef
69.
Zurück zum Zitat Hannig K (1982) New aspects in preparative and analytical continuous free-flow cell electrophoresis. Electrophoresis 3(5):235–243CrossRef Hannig K (1982) New aspects in preparative and analytical continuous free-flow cell electrophoresis. Electrophoresis 3(5):235–243CrossRef
70.
Zurück zum Zitat Nguyen TLA, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo JS, Snoulten VE (2008) Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci 105(39):14981–14986CrossRef Nguyen TLA, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo JS, Snoulten VE (2008) Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci 105(39):14981–14986CrossRef
71.
Zurück zum Zitat Vernerey FJ (2016) A mixture approach to investigate interstitial growth in engineering scaffolds. Biomech Model Mechanobiol 15(2):259–278CrossRef Vernerey FJ (2016) A mixture approach to investigate interstitial growth in engineering scaffolds. Biomech Model Mechanobiol 15(2):259–278CrossRef
72.
Zurück zum Zitat Akalp U, Bryant SJ, Vernerey FJ (2016) Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model. Soft Matter 12(36):7505–7520CrossRef Akalp U, Bryant SJ, Vernerey FJ (2016) Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model. Soft Matter 12(36):7505–7520CrossRef
Metadaten
Titel
Phoretic motion of soft vesicles and droplets: an XFEM/particle-based numerical solution
verfasst von
Tong Shen
Franck Vernerey
Publikationsdatum
20.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2017
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1399-y

Weitere Artikel der Ausgabe 1/2017

Computational Mechanics 1/2017 Zur Ausgabe

Neuer Inhalt