Skip to main content
Log in

Isogeometric treatment of frictional contact and mixed mode debonding problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Nowadays the isogeometric analysis (IGA) represents an innovative method that merges design and numerical computations into a unified formulation. In such a context we apply the isogeometric concept based on T-splines and Non Uniform Rational B-Splines (NURBS) discretizations to study the interfacial contact and debonding problems between deformable bodies in large deformations. More in detail, we develop and test a generalized large deformation contact algorithm which accounts for both frictional contact and mixed-mode cohesive debonding in a unified setting. Some numerical examples are provided for varying resolutions of the contact and/or cohesive zone, which show the accuracy of the solutions and demonstrate the potential of the method to solve challenging 2D contact and debonding problems. The superior accuracy of T-splines with respect to NURBS interpolations for a given number of degrees of freedom (Dofs) is always proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Puso MA, Laursen TA, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197:555–566

    Article  MathSciNet  MATH  Google Scholar 

  2. Franke D, Düster A, Nübel V, Rank E (2010) A comparison of the h-, p-, hp- and rp-version of the FEM for the solution of the 2D Hertzian contact problem. Comput Mech 45:513–522

    Article  MATH  Google Scholar 

  3. De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

    MathSciNet  MATH  Google Scholar 

  4. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20

    Article  MathSciNet  MATH  Google Scholar 

  5. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112

    Article  MathSciNet  MATH  Google Scholar 

  6. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209:115–128

    Article  MathSciNet  MATH  Google Scholar 

  7. Corbett CJ, Sauer R (2014) NURBS-enriched contact finite elements. Comput Methods Appl Mech Eng 275:55–75

    Article  MathSciNet  MATH  Google Scholar 

  8. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  9. Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, Sederberg TW (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221

    Article  MathSciNet  MATH  Google Scholar 

  10. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scottand MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263

    Article  MathSciNet  MATH  Google Scholar 

  11. Dörfel M, Juttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199:264–275

    Article  MathSciNet  MATH  Google Scholar 

  12. Nguyen-Thanh N, Nguyen-Xuan H, Bordas S, Rabczuk T (2011) Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput Methods Appl Mech Eng 200(21–22):1892–1908

    Article  MathSciNet  MATH  Google Scholar 

  13. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wü uchner R, Bletzinger KU, Bazilevs Y, Rabczuk T (2011) Rotation free isogeometric thin shell analysis using PHT-splines. Comput Methods Appl Mech Eng 200(47–48):3410–3424

    Article  MathSciNet  MATH  Google Scholar 

  14. Nguyen-Thanh N, Muthu J, Zhuang X, Rabczuk T (2013) An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics. Comput Mech 53:369–385

    Article  MathSciNet  MATH  Google Scholar 

  15. Schillinger D, Dede L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–252:116–150

    Article  MathSciNet  MATH  Google Scholar 

  16. Vuong A-V, Giannelli C, Jüttler B, Simeon B (2012) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 200:3554–3567

    Article  MathSciNet  MATH  Google Scholar 

  17. Dimitri R, De Lorenzis L, Scott M, Wriggers P, Taylor RL, Zavarise G (2014) Isogeometric large deformation frictionless contact using T-splines. Comput Methods Appl Mech Eng 269:394–414

    Article  MathSciNet  MATH  Google Scholar 

  18. Taylor RL (2013) FEAP—finite element analysis program, University of California, Berkeley. www.ce.berkeley/feap

  19. Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736

    Article  MATH  Google Scholar 

  20. Xu XP, Needleman A (1993) Void nucleation by inclusions debonding in a crystal matrix. Model Simul Mater Sci Eng 1:111–132

    Article  Google Scholar 

  21. van den Bosch MJ, Schreurs PJG, Geers MGD (2006) An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73:1220–1234

    Article  Google Scholar 

  22. Dimitri R, Trullo M, De Lorenzis L, Zavarise G (2015) Coupled cohesive zone models for mixed-mode fracture: a comparative study. Eng Fract Mech 148:145–179

    Article  Google Scholar 

  23. ASTM D 6671/D 6671M (2006). Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites

  24. ASTM D 3165-07 (2014). Standard test method for strength properties of adhesives in shear by tension loading of single-lap joint laminated assemblies

  25. Hughes TJR (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-hall, Englewood Cliffs

    MATH  Google Scholar 

  26. Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222

    Article  MathSciNet  MATH  Google Scholar 

  27. Vuong AV, Giannelli C, Juttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 200:3554–3567

    Article  MathSciNet  MATH  Google Scholar 

  28. Schillinger D, Dedè L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–250:116–150

    Article  MathSciNet  MATH  Google Scholar 

  29. Scott MA, Thomas DC, Evans EJ (2014) Isogeometric spline forests. Comput Methods Appl Mech Eng 269:222–264

    Article  MathSciNet  MATH  Google Scholar 

  30. Dimitri R, De Lorenzis L, Wriggers P, Zavarise G (2014) NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54:369–388

    Article  MathSciNet  MATH  Google Scholar 

  31. Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of Tsplines. Numer Methods Eng 88(2):126–156

    Article  MATH  Google Scholar 

  32. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCSs. ACM Trans Graph 22(3):477–484

    Article  Google Scholar 

  33. Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T (2004) T-spline simplification and local refinement. ACM Trans Graph 23(3):276–283

    Article  Google Scholar 

  34. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  35. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  36. Zavarise G, Boso D, Scherefler BA (2001) A contact formulation for electrical and mechanical resistance. In: Martins JAC, Monteiro Marques MDP (eds) Proceedings of CMIS III, contact mechanics international symposium, Praja de Consolacao, Protugal, pp 211–218

  37. Autodesk, Inc. (2011). http://www.tsplines.com/rhino/

  38. Nowell D, Hills DA, Sackfield A (1988) Contact of dissimilar elastic cylinders under normal and tangential loading. J Mech Phys Solids 36(1):59–75

    Article  MATH  Google Scholar 

  39. Hills DA, Nowell D (1994) Mechanics of fretting fatigue. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  40. Reeder JR, Crews JrJH (1990) Mixed-mode bending method for delamination testing. AIAA J 28(7):1270–1276

    Article  Google Scholar 

  41. Mi Y, Crisfield MA (1996) Analytical derivation of load/displacement relationships for mixed-mode delamination and comparison with finite element results. Imperial college, Department of Aeronautics, London

  42. Galietti U, Dimitri R, Palumbo D, Rubino P (2012) Thermal analysis and mechanical characterization of GFRP joints. In: ECCM15, 15th European conference on composite materials

Download references

Acknowledgements

The first author would like to acknowledge the Regional progject “MIPER PS_095 (Innovative Materials and Methodologies for Products in Renewable Energy sector), and the ENEA Research Centre of Brindisi (UTTMATB-COMP) where the experimental investigation on the composite adhesive joints has been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossana Dimitri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitri, R., Zavarise, G. Isogeometric treatment of frictional contact and mixed mode debonding problems. Comput Mech 60, 315–332 (2017). https://doi.org/10.1007/s00466-017-1410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1410-7

Keywords

Navigation