Skip to main content
Log in

A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The modeling of failure in ductile materials must account for complex phenomena at the micro-scale, such as nucleation, growth and coalescence of micro-voids, as well as the final rupture at the macro-scale, as rooted in the work of Gurson (J Eng Mater Technol 99:2–15, 1977). Within a top–down viewpoint, this can be achieved by the combination of a micro-structure-informed elastic–plastic model for a porous medium with a concept for the modeling of macroscopic crack discontinuities. The modeling of macroscopic cracks can be achieved in a convenient way by recently developed continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities, see Miehe et al. (Comput Methods Appl Mech Eng 294:486–522, 2015). This avoids the use of complex discretization methods for crack discontinuities, and can account for complex crack patterns. In this work, we develop a new theoretical and computational framework for the phase field modeling of ductile fracture in conventional elastic–plastic solids under finite strain deformation. It combines modified structures of Gurson–Tvergaard–Needelman GTN-type plasticity model outlined in Tvergaard and Needleman (Acta Metall 32:157–169, 1984) and Nahshon and Hutchinson (Eur J Mech A Solids 27:1–17, 2008) with a new evolution equation for the crack phase field. An important aspect of this work is the development of a robust Explicit–Implicit numerical integration scheme for the highly nonlinear rate equations of the enhanced GTN model, resulting with a low computational cost strategy. The performance of the formulation is underlined by means of some representative examples, including the development of the experimentally observed cup–cone failure mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. For standard von Mises plasticity, the equivalent plastic strain is defined as

    figure a
  2. Regarding to the relation between the fracture length scale parameter l and the finite element size \(h_e\), we refer to the work of Miehe et. al. [42], where \(l\ge 2 h_e\) is required to resolve the regularized crack surface \(\varGamma _l(d)\), such that we have \(\varGamma _l(d) = \varGamma \) in the finite element approximation.

  3. To overcome the pathological mesh dependency behavior, a non-local GTN damage model can be used, that based on gradient plasticity coupled with fracture phase field, in line with Miehe et. al. [41]. In this approach, a micromororphic regularization on the side of gradient plasticity is introduced by considering an extended set of plastic variables, which are linked by penalty term in a modified energetic response function. This formulation is recently extended towards coupled thermomechanical response of gradient plasticity as outlined in Aldakheel [2] for finite deformations in the logarithmic strain space and Aldakheel and Miehe [4] at small strains.

References

  1. Aldakheel F (2016) Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture. Ph.D. thesis, Institute of Applied Mechanics (CE), Chair I, University of Stuttgart. https://doi.org/10.18419/opus-8803

  2. Aldakheel F (2017) Micromorphic approach for gradient-extended thermo-elastic–plastic solids in the logarithmic strain space. Contin Mech Thermodyn 29(6):1207–1217

    Article  MathSciNet  MATH  Google Scholar 

  3. Aldakheel F, Mauthe S, Miehe C (2014) Towards phase field modeling of ductile fracture in gradient-extended elastic–plastic solids. Proc Appl Math Mech 14:411–412

    Article  Google Scholar 

  4. Aldakheel F, Miehe C (2017) Coupled thermomechanical response of gradient plasticity. Int J Plast 91:1–24

    Article  Google Scholar 

  5. Alessi R, Marigo JJ, Maurini C, Vidoli S (2017) Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: one-dimensional examples. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2017.05.047

    Google Scholar 

  6. Alves M, Jones N (1999) Influence of hydrostatic stress on failure of axisymmetric notched specimens. J Mech Phys Solids 47:643–667

    Article  MATH  Google Scholar 

  7. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55:1017–1040

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 24:1071–1096

    Article  MATH  Google Scholar 

  9. Becker R, Needleman A, Richmond O, Tvergaard V (1988) Void growth and failure in notched bars. J Mech Phys Solids 36(3):317–351

    Article  Google Scholar 

  10. Beese S, Loehnert S, Wriggers P (2017) 3D ductile crack propagation within a polycrystalline microstructure using XFEM. Comput Mech. https://doi.org/10.1007/s00466-017-1427-y

    MATH  Google Scholar 

  11. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  MATH  Google Scholar 

  12. Benzerga AA, Leblond JB (2010) Ductile fracture by void growth to coalescence. Adv Appl Mech 44:169–305

    Article  Google Scholar 

  13. Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19:3–52

    Article  Google Scholar 

  14. Besson J, Steglich D, Brocks W (2001) Modeling of crack growth in round bars and plane strain specimens. Int J Solids Struct 38:8259–8284

    Article  MATH  Google Scholar 

  15. Betegon C, del Coz J, Penuelas I (2006) Implicit integration procedure for viscoplastic gurson materials. Comput Methods Appl Mech Eng 195(44):6146–6157

    Article  MATH  Google Scholar 

  16. Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166

    Article  MathSciNet  Google Scholar 

  17. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  MathSciNet  MATH  Google Scholar 

  18. Duda FP, Ciarbonetti A, Sánchez PJ, Huespe AE (2014) A phase-field/gradient damage model for brittle fracture in elastic–plastic solids. Int J Plast 65:269–296

    Article  Google Scholar 

  19. Ehlers W, Luo C (2017) A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing. Comput Methods Appl Mech Eng 315:348–368

    Article  MathSciNet  Google Scholar 

  20. Gurson AL (1975) Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and coalescence. Ph.D. thesis, Division of Engineering, Brown University, E(11-1) 3084/39

  21. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth, part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15

    Article  Google Scholar 

  22. Heider Y, Markert B (2017) A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech Res Commun 80:38–46

    Article  Google Scholar 

  23. Hesch C, Weinberg K (2014) Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int J Numer Methods Eng 99:906–924

    Article  MathSciNet  MATH  Google Scholar 

  24. Huespe A, Needleman A, Oliver J, Sánchez PJ (2012) A finite strain, finite band method for modeling ductile fracture. Int J Plast 28:53–69

    Article  Google Scholar 

  25. Kachanov LM (1986) Introduction to continuum damage mechanics. Springer, New York. https://doi.org/10.1007/978-94-017-1957-5

    Book  MATH  Google Scholar 

  26. Kojic M, Vlastelica I, Zivkovic M (2002) Implicit stress integration procedure for small and large strains of the gurson material model. Int J Numer Methods Eng 53(12):2701–2720

    Article  MATH  Google Scholar 

  27. Kuhn C, Müller R (2011) A new finite element technique for a phase field model of brittle fracture. J Theor Appl Mech 49(4):1115–1133

    Google Scholar 

  28. Leblond J, Perrin G, Devaus J (1995) An improved Gurson-type model for hardenable ductile metals. Eur J Mech A Solids 14:499–527

    MathSciNet  MATH  Google Scholar 

  29. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89

    Article  Google Scholar 

  30. Lemaitre J (1992) A course on damage mechanics. Springer, New York. https://doi.org/10.1007/978-3-642-18255-6

    Book  MATH  Google Scholar 

  31. Lemaitre J, Chaboche J (1990) Mechanics of solid materials. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  32. Li H, Fu M, Lu J, Yang H (2011) Ductile fracture: experiments and computations. Int J Plast 27:147–180

    Article  Google Scholar 

  33. Linder C, Zhang X (2013) A marching cubes based failure surface propagation concept for three-dimensional finite elements with non-planar embedded strong discontinuities of higher-order kinematics. Int J Numer Methods Eng 96(6):339–372

    Article  MATH  Google Scholar 

  34. Mediavilla J, Peerlings R, Geers M (2006) A robust and consistent remeshing-transfer operator for ductile fracture simulations. Comput Struct 84:604–623

    Article  Google Scholar 

  35. Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains. a variational gradient-extended plasticity-damage theory. Int J Plast 84:1–32

    Article  Google Scholar 

  36. Miehe C, Aldakheel F, Teichtmeister S (2017) Phase-field modeling of ductile fracture at finite strains: a robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization. Int J Numer Methods Eng 111(9):816–863

    Article  MathSciNet  Google Scholar 

  37. Miehe C, Apel N, Lambrecht M (2002) Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comput Methods Appl Mech Eng 191:5383–5425

    Article  MathSciNet  MATH  Google Scholar 

  38. Miehe C, Gürses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment. Int J Numer Methods Eng 72:127–155

    Article  MathSciNet  MATH  Google Scholar 

  39. Miehe C, Hofacker M, Schänzel LM, Aldakheel F (2015) Phase field modeling of fracture in multi-physics problems. Part II. Brittle-to-ductile failure mode transition and crack propagation in thermo-elastic–plastic solids. Comput Methods Appl Mech Eng 294:486–522

    Article  Google Scholar 

  40. Miehe C, Kienle D, Aldakheel F, Teichtmeister S (2016) Phase field modeling of fracture in porous plasticity: a variational gradient-extended eulerian framework for the macroscopic analysis of ductile failure. Comput Methods Appl Mech Eng 312:3–50

    Article  MathSciNet  Google Scholar 

  41. Miehe C, Teichtmeister S, Aldakheel F (2016) Phase-field modeling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization. Philos Trans R Soc Lond A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2015.0170

    MATH  Google Scholar 

  42. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  43. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  44. Mosler J (2004) On the modeling of highly localized deformations induced by material failure: the strong discontinuity approach. Arch Comput Methods Eng 11:389–446

    Article  MathSciNet  MATH  Google Scholar 

  45. Mosler J, Meschke G (2003) 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations. Int J Numer Methods Eng 57:1553–1576

    Article  MATH  Google Scholar 

  46. Nahshon K, Hutchinson J (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solids 27:1–17

    Article  MATH  Google Scholar 

  47. Needleman A, Tvergaard V (1984) An analysis of ductile rupture in notched bars. J Mech Phys Solids 32:461–490

    Article  Google Scholar 

  48. Oliver J, Huespe A, Blanco S, Linero D (2005) Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach. Comput Methods Appl Mech Eng 195:7093–7114

    Article  MATH  Google Scholar 

  49. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  MATH  Google Scholar 

  50. Pham K, Amor H, Marigo J, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20(4):618–652

    Article  Google Scholar 

  51. Reinoso J, Paggi M, Linder C (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation. Comput Mech 59(6):981–1001

    Article  MathSciNet  MATH  Google Scholar 

  52. Reusch F, Svendsen B, Klingbeil D (2003) Local and non-local Gurson-based ductile damage and failure modelling at large deformation. Eur J Mech A Solids 22:779–792

    Article  MATH  Google Scholar 

  53. Sánchez PJ, Huespe AE, Oliver J (2008) On some topics for the numerical simulation of ductile fracture. Int J Plast 24:1008–1038

    Article  MATH  Google Scholar 

  54. Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12:277–296

    Article  MathSciNet  MATH  Google Scholar 

  55. Teichtmeister S, Kienle D, Aldakheel F, Keip MA (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Nonlinear Mech 97:1–21

    Article  Google Scholar 

  56. Tvergaard V (1982) On localization in ductile materials containing spherical voids. Int J Fract 18:237–252

    Google Scholar 

  57. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  58. Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Methods Eng 96:43–62

    Article  MathSciNet  MATH  Google Scholar 

  59. Wick T (2017) Modified newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation. Comput Methods Appl Mech Eng 325:577–611

    Article  MathSciNet  Google Scholar 

  60. Xue L, Wierzbicki T (2008) Ductile fracture initiation and propagation modeling using damage plasticity theory. Eng Fract Mech 75:3276–3293

    Article  Google Scholar 

  61. Xue Z, Pontin M, Zok F, Hutchinson J (2010) Calibration procedures for a computational model of ductile fracture. Eng Fract Mech 77:492–509

    Article  Google Scholar 

  62. Zhang Z (1995) On the accuracies of numerical integration algorithms for gurson-based pressure-dependent elastoplastic constitutive models. Comput Methods Appl Mech Eng 121(1):15–28

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

F. A. wants to thank the late Professor Christian Miehe, whose continuous scientific support and great mentorship will always be remembered. Support for this research was provided by the “German Research Foundation” (DFG) within project WR 19/58-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Aldakheel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldakheel, F., Wriggers, P. & Miehe, C. A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling. Comput Mech 62, 815–833 (2018). https://doi.org/10.1007/s00466-017-1530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1530-0

Keywords

Navigation