Skip to main content
Erschienen in: Computational Mechanics 6/2018

07.05.2018 | Original Paper

A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures

verfasst von: D. Beli, J.-M. Mencik, P. B. Silva, J. R. F. Arruda

Erschienen in: Computational Mechanics | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wave finite element method has proved to be an efficient and accurate numerical tool to perform the free and forced vibration analysis of linear reciprocal periodic structures, i.e. those conforming to symmetrical wave fields. In this paper, its use is extended to the analysis of rotating periodic structures, which, due to the gyroscopic effect, exhibit asymmetric wave propagation. A projection-based strategy which uses reduced symplectic wave basis is employed, which provides a well-conditioned eigenproblem for computing waves in rotating periodic structures. The proposed formulation is applied to the free and forced response analysis of homogeneous, multi-layered and phononic ring structures. In all test cases, the following features are highlighted: well-conditioned dispersion diagrams, good accuracy, and low computational time. The proposed strategy is particularly convenient in the simulation of rotating structures when parametric analysis for several rotational speeds is usually required, e.g. for calculating Campbell diagrams. This provides an efficient and flexible framework for the analysis of rotordynamic problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Beli D, Silva PB, de França Arruda JR (2015) Vibration analysis of flexible rotating rings using a spectral element formulation. J Vib Acoust 137:041003CrossRef Beli D, Silva PB, de França Arruda JR (2015) Vibration analysis of flexible rotating rings using a spectral element formulation. J Vib Acoust 137:041003CrossRef
2.
Zurück zum Zitat Beli D, Silva PB, de França Arruda JR (2018) Mechanical circulator for elastic waves by using the nonreciprocity of flexible rotating rings. Mech Syst Signal Process 98:1077–1096CrossRef Beli D, Silva PB, de França Arruda JR (2018) Mechanical circulator for elastic waves by using the nonreciprocity of flexible rotating rings. Mech Syst Signal Process 98:1077–1096CrossRef
3.
Zurück zum Zitat Chang Y-C, Schulman JN (1982) Complex band structures of crystalline solids. Phys Rev B 25:3975–3986CrossRef Chang Y-C, Schulman JN (1982) Complex band structures of crystalline solids. Phys Rev B 25:3975–3986CrossRef
4.
Zurück zum Zitat Doyle JF (1997) Wave propagation in structures: spectral analysis using fast discrete fourier transforms, mechanical engineering series. Springer, New YorkCrossRef Doyle JF (1997) Wave propagation in structures: spectral analysis using fast discrete fourier transforms, mechanical engineering series. Springer, New YorkCrossRef
5.
Zurück zum Zitat Droz C, Lainé J-P, Ichchou MN, Inquiété G (2014) A reduced formulation for the free-wave propagation analysis in composite structures. Compos Struct 113:134–144CrossRef Droz C, Lainé J-P, Ichchou MN, Inquiété G (2014) A reduced formulation for the free-wave propagation analysis in composite structures. Compos Struct 113:134–144CrossRef
6.
Zurück zum Zitat Duhamel D, Mace BR, Brennan MJ (2006) Finite element analysis of the vibrations of waveguides and periodic structures. J Sound Vib 294(1–2):205–220CrossRef Duhamel D, Mace BR, Brennan MJ (2006) Finite element analysis of the vibrations of waveguides and periodic structures. J Sound Vib 294(1–2):205–220CrossRef
7.
Zurück zum Zitat Endo M, Hatamura K, Sakata M, Taniguchi O (1984) Flexural vibration of a thin rotating ring. J Sound Vib 92(2):261–272CrossRef Endo M, Hatamura K, Sakata M, Taniguchi O (1984) Flexural vibration of a thin rotating ring. J Sound Vib 92(2):261–272CrossRef
8.
Zurück zum Zitat Ettouney MM, Daddazio RP, Abboud NN (1997) Some practical applications of the use of scale independent elements for dynamic analysis of vibrating systems. Comput Struct 65(3):423–432CrossRef Ettouney MM, Daddazio RP, Abboud NN (1997) Some practical applications of the use of scale independent elements for dynamic analysis of vibrating systems. Comput Struct 65(3):423–432CrossRef
9.
Zurück zum Zitat Fan Y, Collet M, Ichchou M, Li L, Bareille O, Dimitrijevic Z (2017) Enhanced wave and finite element method for wave propagation and forced response prediction in periodic piezoelectric structures. Chin J Aeronaut 30(1):75–87CrossRef Fan Y, Collet M, Ichchou M, Li L, Bareille O, Dimitrijevic Z (2017) Enhanced wave and finite element method for wave propagation and forced response prediction in periodic piezoelectric structures. Chin J Aeronaut 30(1):75–87CrossRef
10.
Zurück zum Zitat Fleury R, Sounas DL, Sieck CF, Haberman MR, Alù A (2014) Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343(6170):516–519CrossRef Fleury R, Sounas DL, Sieck CF, Haberman MR, Alù A (2014) Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343(6170):516–519CrossRef
11.
12.
Zurück zum Zitat Heyliger PR (2013) When beam theories fail. J Mech Mater Struct 8(1):15–35CrossRef Heyliger PR (2013) When beam theories fail. J Mech Mater Struct 8(1):15–35CrossRef
13.
Zurück zum Zitat Huang SC, Soedel W (1987) Effects of coriolis acceleration on the free and forced in-plane vibrations of rotating rings on elastic foundation. J Sound Vib 115(2):253–274CrossRef Huang SC, Soedel W (1987) Effects of coriolis acceleration on the free and forced in-plane vibrations of rotating rings on elastic foundation. J Sound Vib 115(2):253–274CrossRef
14.
Zurück zum Zitat Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802CrossRef Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802CrossRef
15.
Zurück zum Zitat Lalanne M, Ferraris G (1998) Rotordynamics prediction in engineering. Number v. 2 in Rotordynamics prediction in engineering. Wiley, Hoboken Lalanne M, Ferraris G (1998) Rotordynamics prediction in engineering. Number v. 2 in Rotordynamics prediction in engineering. Wiley, Hoboken
16.
Zurück zum Zitat Lee S-K, Mace BR, Brennan MJ (2007) Wave propagation, reflection and transmission in curved beams. J Sound Vib 306(3):636–656CrossRef Lee S-K, Mace BR, Brennan MJ (2007) Wave propagation, reflection and transmission in curved beams. J Sound Vib 306(3):636–656CrossRef
17.
Zurück zum Zitat Lee U (2009) Spectral element method in structural dynamics. Wiley, HobokenCrossRef Lee U (2009) Spectral element method in structural dynamics. Wiley, HobokenCrossRef
18.
Zurück zum Zitat Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736CrossRef Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736CrossRef
19.
20.
Zurück zum Zitat Maldovan M (2013) Sound and heat revolutions in phononics. Nature 503:209CrossRef Maldovan M (2013) Sound and heat revolutions in phononics. Nature 503:209CrossRef
21.
Zurück zum Zitat Mead DJ (2009) The forced vibration of one-dimensional multi-coupled periodic structures: an application to finite element analysis. J Sound Vib 319:282–304CrossRef Mead DJ (2009) The forced vibration of one-dimensional multi-coupled periodic structures: an application to finite element analysis. J Sound Vib 319:282–304CrossRef
22.
Zurück zum Zitat Mead DM (1996) Wave propagation in continuous periodic structures: research contributions from southampton, 1964–1995. J Sound Vib 190(3):495–524CrossRef Mead DM (1996) Wave propagation in continuous periodic structures: research contributions from southampton, 1964–1995. J Sound Vib 190(3):495–524CrossRef
23.
Zurück zum Zitat Mencik J-M (2010) On the low- and mid-frequency forced response of elastic systems using wave finite elements with one-dimensional propagation. Comput Struct 88(11–12):674–689CrossRef Mencik J-M (2010) On the low- and mid-frequency forced response of elastic systems using wave finite elements with one-dimensional propagation. Comput Struct 88(11–12):674–689CrossRef
24.
Zurück zum Zitat Mencik J-M (2011) Model reduction and perturbation analysis of wave finite element formulations for computing the forced response of coupled elastic systems involving junctions with uncertain eigenfrequencies. Comput Methods Appl Mech Eng 200(45–46):3051–3065MathSciNetCrossRef Mencik J-M (2011) Model reduction and perturbation analysis of wave finite element formulations for computing the forced response of coupled elastic systems involving junctions with uncertain eigenfrequencies. Comput Methods Appl Mech Eng 200(45–46):3051–3065MathSciNetCrossRef
25.
Zurück zum Zitat Mencik J-M (2012) A model reduction strategy for computing the forced response of elastic waveguides using the wave finite element method. Comput Methods Appl Mech Eng 229–232:68–86MathSciNetCrossRef Mencik J-M (2012) A model reduction strategy for computing the forced response of elastic waveguides using the wave finite element method. Comput Methods Appl Mech Eng 229–232:68–86MathSciNetCrossRef
26.
Zurück zum Zitat Mencik J-M (2014) New advances in the forced response computation of periodic structures using the wave finite element (WFE) method. Comput Mech 54(3):789–801MathSciNetCrossRef Mencik J-M (2014) New advances in the forced response computation of periodic structures using the wave finite element (WFE) method. Comput Mech 54(3):789–801MathSciNetCrossRef
27.
Zurück zum Zitat Mencik J-M, Duhamel D (2015) A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models. Finite Elem Anal Des 101:1–14MathSciNetCrossRef Mencik J-M, Duhamel D (2015) A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models. Finite Elem Anal Des 101:1–14MathSciNetCrossRef
28.
Zurück zum Zitat Mencik J-M, Ichchou MN (2005) Multi-mode propagation and diffusion in structures through finite elements. Eur J Mech A Solids 24(5):877–898MathSciNetCrossRef Mencik J-M, Ichchou MN (2005) Multi-mode propagation and diffusion in structures through finite elements. Eur J Mech A Solids 24(5):877–898MathSciNetCrossRef
29.
Zurück zum Zitat Nobrega ED, Gautier F, Pelat A, Dos Santos JMC (2016) Vibration band gaps for elastic metamaterial rods using wave finite element method. Mech Syst Signal Process 79:192–202CrossRef Nobrega ED, Gautier F, Pelat A, Dos Santos JMC (2016) Vibration band gaps for elastic metamaterial rods using wave finite element method. Mech Syst Signal Process 79:192–202CrossRef
30.
Zurück zum Zitat Rao JS (2011) History of rotating machinery dynamics. Springer, Dordrecht, The NetherlandsCrossRef Rao JS (2011) History of rotating machinery dynamics. Springer, Dordrecht, The NetherlandsCrossRef
31.
Zurück zum Zitat Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vib 158(2):377–382CrossRef Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. J Sound Vib 158(2):377–382CrossRef
32.
Zurück zum Zitat Silva PB, Mencik J-M, Arruda JRF (2016) Wave finite element-based superelements for forced response analysis of coupled systems via dynamic substructuring. Int J Numer Meth Eng 107(6):453–476MathSciNetCrossRef Silva PB, Mencik J-M, Arruda JRF (2016) Wave finite element-based superelements for forced response analysis of coupled systems via dynamic substructuring. Int J Numer Meth Eng 107(6):453–476MathSciNetCrossRef
33.
Zurück zum Zitat Veres IA, Berer T, Matsuda O (2013) Complex band structures of two dimensional phononic crystals: analysis by the finite element method. J Appl Phys 114(8):083519CrossRef Veres IA, Berer T, Matsuda O (2013) Complex band structures of two dimensional phononic crystals: analysis by the finite element method. J Appl Phys 114(8):083519CrossRef
34.
Zurück zum Zitat Waki Y, Mace BR, Brennan M (2009) Free and forced vibrations of a tyre using a wave/finite element approach. J Sound Vib 323(3–5):737–756CrossRef Waki Y, Mace BR, Brennan M (2009) Free and forced vibrations of a tyre using a wave/finite element approach. J Sound Vib 323(3–5):737–756CrossRef
35.
Zurück zum Zitat Waki Y, Mace BR, Brennan MJ (2009) Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J Sound Vib 327(1–2):92–108CrossRef Waki Y, Mace BR, Brennan MJ (2009) Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J Sound Vib 327(1–2):92–108CrossRef
36.
Zurück zum Zitat Zhong WX, Williams FW (1995) On the direct solution of wave propagation for repetitive structures. J Sound Vib 181(3):485–501CrossRef Zhong WX, Williams FW (1995) On the direct solution of wave propagation for repetitive structures. J Sound Vib 181(3):485–501CrossRef
37.
Zurück zum Zitat Zhou CW, Lainé JP, Ichchou MN, Zine AM (2015) Wave finite element method based on reduced model for one-dimensional periodic structures. Int J Appl Mech 7(2):1550018CrossRef Zhou CW, Lainé JP, Ichchou MN, Zine AM (2015) Wave finite element method based on reduced model for one-dimensional periodic structures. Int J Appl Mech 7(2):1550018CrossRef
Metadaten
Titel
A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures
verfasst von
D. Beli
J.-M. Mencik
P. B. Silva
J. R. F. Arruda
Publikationsdatum
07.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1576-7

Weitere Artikel der Ausgabe 6/2018

Computational Mechanics 6/2018 Zur Ausgabe

Neuer Inhalt