Skip to main content
Log in

Electrodynamic machine-learning-enhanced fault-tolerance of robotic free-form printing of complex mixtures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Rapid free-form printing of particle-functionalized materials is an integral component of 3D printing and additive manufacturing. Such processes consist of attaching a dispenser to a robot arm which then releases droplets of specialized mixtures in free-space that are deposited onto a substrate. These approaches are popular because they utilize widely-available, highly-programmable, robots. However, often the release of a complex mixture in free-space is somewhat imprecise, thus electrodynamic field control has been proposed as a possible remedy to enhance the precision of such processes. Specifically, electrodynamic control of the material is achieved by electrifying the released material in the presence of a prescribed ambient electrical field generated from the substrate, in order to guide it to the desired position. There are many components that comprise such a system, thus motivating the construction of a simulation tool framework assembling submodels of the:

  • kinematics of the robot arm and the dispenser-printer head,

  • electrodynamic and gravitational forces on the released material,

  • dynamics of the released material and

  • conductive, convective and radiative cooling of the media.

The modular system structure allows for easy replacement of submodels within the overall framework. Numerical simulations are undertaken to illustrate the overall system model, which is comprised of an assembly of submodels. Afterwards, a Machine Learning Algorithm (MLA) is developed to identify and optimize the proper system parameters which deliver a desired printed pattern. Specifically, an MLA is developed to ascertain the appropriate combination of robotic motion and electrical fields needed to create structures which would be difficult or impossible by purely mechanical means alone. Afterwards, extensions involving more detailed models are then provided, based on the Discrete Element Method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The viscosity coefficient for air is \(\mu _f=0.000018\) Pa/s.

  2. In the analysis to follow, we assume \(\mu \approx \mu _s\).

  3. More sophisticated implicit solution methods for strongly interacting multi-component systems can be found in Zohdi [33, 33,34,35,36,37,38,39,40,41,42,43,44].

References

  1. Zohdi TI, Dornfeld DA (2015) Future synergy between computational mechanics and advanced additive manufacturing. US National Academies Report. http://sites.nationalacademies.org/cs/groups/pgasite/documents/webpage/pga_166813.pdf

  2. Huang Y, Leu MC, Mazumdar J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendation. J Manuf Sci Eng 137:014001–1

    Article  Google Scholar 

  3. Hunt KH (1979) Kinematic geometry of mechanisms. Oxford engineering science series. Oxford University Press, Oxford

    MATH  Google Scholar 

  4. Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York

    MATH  Google Scholar 

  5. Howell LL (2001) Compliant mechanisms. Wiley, Hoboken

    Google Scholar 

  6. McCarthy JM, Soh GS (2010) Geometric design of linkages. Springer, New York

    MATH  Google Scholar 

  7. McCarthy JM (1990) Introduction to theoretical kinematics. MIT Press, Cambridge

    Google Scholar 

  8. Reuleaux F (1876) The kinematics of machinery (trans. and annotated by A. B. W. Kennedy) reprinted by Dover, New York (1963)

  9. Sandor GN, Erdman AG (1984) Advanced mechanism design: analysis and synthesis, vol 2. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  10. Slocum A (1992) Precision machine design. SME, Southfield

    Google Scholar 

  11. Suh CH, Radcliffe CW (1978) Kinematics and mechanism design. Wiley, New York

    Google Scholar 

  12. Uicker JJ, Pennock GR, Shigley JE (2003) Theory of machines and mechanisms. Oxford University Press, New York

    Book  Google Scholar 

  13. Papageorgiou DT (1995) On the breakup of viscous liquid threads. Phys Fluids 7(7):15291521

    Article  MathSciNet  Google Scholar 

  14. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69(3):865

    Article  MATH  Google Scholar 

  15. Zohdi TI (2017) Laser-induced heating of dynamic depositions in additive manufacturing. Methods Appl Mech Eng Comput. https://doi.org/10.1016/j.cma.2017.11.003

    Google Scholar 

  16. Zohdi TI (2017) On simple scaling laws for pumping fluids with electrically-charged particles. Int J Eng Sci. https://doi.org/10.1016/j.ijengsci.2017.11.003

    MathSciNet  MATH  Google Scholar 

  17. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  18. Chow CY (1980) An introduction to computational fluid dynamics. Wiley, New York

    Google Scholar 

  19. Schlichtling H (1979) Boundary-layer theory, 7th edn. McGraw-Hill, New York

    Google Scholar 

  20. Whitaker S (1972) Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and flow in packed beds and tube bundles. AIChE J 18:361371

    Google Scholar 

  21. Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342

    Article  MathSciNet  MATH  Google Scholar 

  22. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    Article  MathSciNet  MATH  Google Scholar 

  23. Hashin Z (1983) Analysis of composite materials: a survey. ASME J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  24. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  MATH  Google Scholar 

  25. Jikov VV, Kozlov SM, Olenik OA (1994) Homogenization of differential operators and integral functionals. Springer, New York

    Book  Google Scholar 

  26. Mura T (1993) Micromechanics of defects in solids, 2nd edn. Kluwer Academic Publishers, Alphen aan den Rijn

    Google Scholar 

  27. Markov KZ (2000) Elementary micromechanics of heterogeneous media. In: Markov Z, Preziozi L (eds) Heterogeneous media micromechanics modeling methods and simulations k. Birkhauser, Boston, pp 1–162

    Google Scholar 

  28. Ghosh S (2011) Micromechanical analysis and multi-scale modeling using the voronoi cell finite element method. CRC Press/Taylor & Francis, Boca Raton

    Book  MATH  Google Scholar 

  29. Ghosh S, Dimiduk D (2011) Computational methods for microstructure–property relations. Springer, New York

    Book  Google Scholar 

  30. Matouša K, Geers MGD, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192–220

    Article  MathSciNet  Google Scholar 

  31. Zohdi TI, Wriggers P (2005, 2008) Introduction to computational micromechanics. Second Reprinting (PeerReviewed). Springer, New York

  32. Zohdi TI (2012) Electromagnetic properties of multiphase dielectrics. A primer on modeling, theory and computation. Springer, New York

    Book  MATH  Google Scholar 

  33. Zohdi TI (2002) An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids. Int J Numer Methods Eng 53:1511–1532

    Article  MathSciNet  MATH  Google Scholar 

  34. Zohdi TI (2004) Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput Methods Appl Mech Eng 193(6–8):679–699

    Article  MATH  Google Scholar 

  35. Zohdi TI (2004) Modeling and direct simulation of near-field granular flows. Int J Solids Struct 42(2):539–564

    Article  MATH  Google Scholar 

  36. Zohdi TI (2005) Charge-induced clustering in multifield particulate flow. Int J Numer Methods Eng 62(7):870–898

    Article  MathSciNet  MATH  Google Scholar 

  37. Zohdi TI (2007) Computation of strongly coupled multifield interaction in particle–fluid systems. Comput Methods Appl Mech Eng 196:3927–3950

    Article  MathSciNet  MATH  Google Scholar 

  38. Zohdi TI (2010) On the dynamics of charged electromagnetic particulate jets. Arch Comput Methods Eng 17(2):109–135

    Article  MathSciNet  MATH  Google Scholar 

  39. Zohdi TI (2010) Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput Methods Appl Mech Eng 199:79–101

    Article  MathSciNet  MATH  Google Scholar 

  40. Zohdi TI (2013) Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J Comput Phys 233:509–526

    Article  MathSciNet  Google Scholar 

  41. Zohdi TI (2014) Additive particle deposition and selective laser processing—a computational manufacturing framework. Comput Mech 54:171–191

    Article  Google Scholar 

  42. Zohdi TI (2014) Embedded electromagnetically sensitive particle motion in functionalized fluids. Comput Part Mech 1:27–45

    Article  Google Scholar 

  43. Zohdi TI (2015) Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions. Comput Mech 56:613–630

    Article  MathSciNet  MATH  Google Scholar 

  44. Zohdi TI (2015) Modeling and efficient simulation of the deposition of particulate flows onto compliant substrates. Int J Eng Sci 99:74–91. https://doi.org/10.1016/j.ijengsci.2015.10.012

    Article  MathSciNet  MATH  Google Scholar 

  45. Zohdi TI (2003) Genetic design of solids possessing a random-particulate microstructure. Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043

    Article  MathSciNet  MATH  Google Scholar 

  46. Zohdi TI (2017) Dynamic thermomechanical modeling and simulation of the design of rapid free-form 3D printing processes with evolutionary machine learning. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2017.11.030

    MathSciNet  Google Scholar 

  47. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  48. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  49. Davis L (1991) Handbook of genetic algorithms. Thompson Computer Press, Berkeley

    Google Scholar 

  50. Onwubiko C (2000) Introduction to engineering design optimization. Prentice Hall, Upper Saddle River

    Google Scholar 

  51. Lagaros N, Papadrakakis M, Kokossalakis G (2002) Structural optimization using evolutionary algorithms. Comput Struct 80:571–589

    Article  Google Scholar 

  52. Papadrakakis M, Lagaros N, Thierauf G, Cai J (1998a) Advanced solution methods in structural optimisation using evolution strategies. Eng Comput J 15(1):12–34

    Article  MATH  Google Scholar 

  53. Papadrakakis M, Lagaros N, Tsompanakis Y (1998b) Structural optimization using evolution strategies and neutral networks. Comput Methods Appl Mech Eng 156(1):309–335

    Article  MATH  Google Scholar 

  54. Papadrakakis M, Lagaros N, Tsompanakis Y (1999a) Optimization of large-scale 3D trusses using Evolution Strategies and Neural Networks. Int J Space Struct 14(3):211–223

    Article  Google Scholar 

  55. Papadrakakis M, Tsompanakis J, Lagaros N (1999b) Structural shape optimisation using evolution strategies. Eng Optim 31:515–540

    Article  MATH  Google Scholar 

  56. Goldberg DE, Deb K (2000) Special issue on Genetic Algorithms. Comput Methods Appl Mech Eng 186(2–4):121–124

    Article  MATH  Google Scholar 

  57. Thomas D (2017) Could 3D bioprinted tissues offer future hope for microtia treatment? Int J Surg 32:43–44

    Article  Google Scholar 

  58. Nakashima Yasuharu, Okazak Ken, Nakayama Koichiet, Okada Seiji, Mizu-uchi Hideki (2017) Bone and joint diseases in present and future. Fukuoka Igaku Zasshi = Hukuoka Acta Medica 108:1–17 (ISSN 0016-254X. PMID 29226660)

    Google Scholar 

  59. Doyle Ken (2014) Bioprinting from patches to parts. Gen Eng Biotechnol News 34(10):1–345. https://doi.org/10.1089/gen.34.10.02

    Google Scholar 

  60. Boland T, Wilson WC Jr., Xu T (2006) Ink-jet printing of viable cells. US patent 7051654, issued 2006-05-30

  61. Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22(3):254265. https://doi.org/10.1016/j.molmed.2016.01.003

    Article  Google Scholar 

  62. Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33(7):395400. https://doi.org/10.1016/j.tibtech.2015.04.005

    Article  Google Scholar 

  63. Chua CK, Yeong WY (2015) Bioprinting: principles and applications. World Scientific Publishing Co, Singapore, p 296 (ISBN 9789814612104. Retrieved 17 February 2016)

    Book  Google Scholar 

  64. Harmon K (2013) A sweet solution for replacing organs (PDF). Sci Am 308(4):5455. https://doi.org/10.1038/scientificamerican0413-54. (Retrieved 17 February 2016)

    Google Scholar 

  65. Murphy S, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:77385. https://doi.org/10.1038/nbt.2958 PMID 25093879

    Article  Google Scholar 

  66. Crawford M (2013) Creating valve tissue using 3-D bioprinting. ASME.org. American Society of Mechanical Engineers, New York (Retrieved 17 February 2016)

    Google Scholar 

  67. Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res Part A 101A(1):27284. https://doi.org/10.1002/jbm.a.34326. (PMID 22941807)

    Article  Google Scholar 

  68. Souza GR (2010) Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol 5:2916

    Article  Google Scholar 

  69. Haisler WL (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8:19409

    Article  Google Scholar 

  70. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:30924

    Article  Google Scholar 

  71. Seiler AEM, Spielmann H (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6:96178

    Article  Google Scholar 

  72. Tseng H (2013) Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation. Tissue Eng Part C Methods 19:66575

    Article  Google Scholar 

  73. Tseng H (2014) A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomater 10:17382

    Article  Google Scholar 

  74. Daquinag AC, Souza GR, Kolonin MG (2013) Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng Part C Methods 19:33644

    Article  Google Scholar 

  75. Timm DM (2013) A high-throughput three-dimensional cell migration assay for toxicity screening with mobile device-based macroscopic image analysis. Sci Rep 3:3000

    Article  Google Scholar 

  76. Gwathmey JK, Tsaioun K, Hajjar RJ (2009) Cardionomics: a new integrative approach for screening cardiotoxicity of drug candidates. Expert Opin Drug Metab Toxicol 5:64760

    Article  Google Scholar 

  77. Feynman RP, Leighton RB, Sands M (2006) The Feynman lectures on physics 2. ISBN 0-8053-9045-6

  78. Cullity CD, Graham (2008) Introduction to magnetic materials, 2nd edn. Wiley-IEEE Press, New York, p 103 0-471-47741-9

    Book  Google Scholar 

  79. Boyer Timothy H (1988) The force on a magnetic dipole. Am J Phys 56(8):688692. https://doi.org/10.1119/1.15501 (Bibcode:1988AmJPh.56.688B)

    Article  Google Scholar 

  80. Zienkiewicz OC (1984) Coupled problems & their numerical solution. In: Lewis RW, Bettes P, Hinton E (eds) Numerical methods in coupled systems. Wiley, Chichester, pp 35–58

    Google Scholar 

  81. Zienkiewicz OC, Paul DK, Chan AHC (1988) Unconditionally stable staggered solution procedure for soil–pore fluid interaction problems. Int J Numer Methods Eng 26:1039–1055

    Article  MATH  Google Scholar 

  82. Lewis RW, Schrefler BA, Simoni L (1992) Coupling versus uncoupling in soil consolidation. Int J Numer Anal Methods Geomech 15:533–548

    Article  Google Scholar 

  83. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley press, New York

    MATH  Google Scholar 

  84. Park KC, Felippa CA (1983) Partitioned analysis of coupled systems. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis. North-Holland, Amsterdam, pp 157–219

    Google Scholar 

  85. Farhat C, Lesoinne M, Maman N (1995) Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int J Numer Methods Fluids 21:807–835

    Article  MathSciNet  MATH  Google Scholar 

  86. Farhat C, Lesoinne M (2000) Two efficient staggered procedures for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182:499–516

    Article  MATH  Google Scholar 

  87. Farhat C, van der Zee G, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195:1973–2001

    Article  MathSciNet  MATH  Google Scholar 

  88. Piperno S (1997) Explicit/implicit fluid/structure staggered procedures with a structural predictor & fluid subcycling for 2D inviscid aeroelastic simulations. Int J Numer Methods Fluids 25:1207–1226

    Article  MathSciNet  MATH  Google Scholar 

  89. Piperno S, Farhat C, Larrouturou B (1995) Partitioned procedures for the transient solution of coupled aeroelastic problems—part I: model problem, theory, and two-dimensional application. Comput Methods Appl Mech Eng 124(1–2):79–112

    Article  MATH  Google Scholar 

  90. Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems—part II: energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190:3147–3170

    Article  MATH  Google Scholar 

  91. Michopoulos G, Farhat C, Fish J (2005) Survey on modeling and simulation of multiphysics systems. J Comput Inf Sci Eng 5(3):198–213

    Article  Google Scholar 

  92. Lesoinne M, Farhat C (1998) Free staggered algorithm for nonlinear transient aeroelastic problems. AIAA J 36(9):1754–1756

    Article  Google Scholar 

  93. Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190(24–25):3039–3067

    Article  MATH  Google Scholar 

  94. Frenklach M, Carmer CS (1999) Molecular dynamics using combined quantum & empirical forces: application to surface reactions. Adv Class Traject methods 4:27–63

    Google Scholar 

  95. Haile JM (1992) Molecular dynamics simulations: elementary methods. Wiley, New York

    Google Scholar 

  96. Hase WL (1999) Molecular dynamics of clusters, surfaces, liquids, & interfaces. Advances in classical trajectory methods, vol 4. JAI Press, Stamford

    Google Scholar 

  97. Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  98. Schlick T (2000) Molecular modeling & simulation. An interdisciplinary guide. Springer, New York

    MATH  Google Scholar 

  99. Moelwyn-Hughes EA (1961) Physical chemistry. Pergamon Press, New York

    Google Scholar 

  100. Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882

    Article  Google Scholar 

  101. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Zohdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohdi, T.I. Electrodynamic machine-learning-enhanced fault-tolerance of robotic free-form printing of complex mixtures. Comput Mech 63, 913–929 (2019). https://doi.org/10.1007/s00466-018-1629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1629-y

Keywords

Navigation