Skip to main content

Advertisement

Log in

Transplantation of renal primordia: renal organogenesis

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Dialysis and allotransplantation of human kidneys represent effective therapies to replace kidney function, but the former replaces only a small component of renal function, and the latter is limited by lack of organ availability. Xenotransplantation of whole kidneys from nonprimate donors is complicated by humoral and severe cellular rejection. The use of individual cells or groups of cells to repair damaged tissue (cellular therapies) offers an alternative for renal tissue replacement. However, recapitulation of complex functions such glomerular filtration and reabsorption and secretion of solutes that are dependent on a three-dimensionally integrated kidney structure are beyond the scope of most cellular replacement therapies. The use of nonvascularized embryonic renal primordia for transplantation circumvents humoral rejection of xenogeneic tissue and ameliorates cellular rejection. Renal primordia are preprogrammed to attract a vasculature and differentiate into a kidney and in this manner undergo organogenesis after transplantation into the mesentery of hosts. Here we review a decade’s progress in renal organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hammerman MR (2004) Treatment for end-stage renal disease: An organogenesis/tissue engineering odyssey. Transpl Immunol 12:211–218

    CAS  PubMed  Google Scholar 

  2. Danovitch GM, Cohen DJ, Weir MR, Stock RG, Bennett WM, Christiansen LL, Sung RS (2005) Current status of kidney and pancreas transplantation in the United States 1994–2003. Am J Transplant 5(Part 2):904–915

    PubMed  Google Scholar 

  3. Hammerman MR (2006) Strategies for cell replacement for kidney failure. Expert Opin Biol Ther 6:87–97

    CAS  PubMed  Google Scholar 

  4. Eventov-Friedman S, Tchorsh D, Katchman H, Shezan E, Arnovich A, Hecht G, Dekel B, Rechavi G, Blazar B, Feine I, Tal O, Freud E, Reisner Y (2006) Embryonic pig pancreatic tissue transplantation for the treatment of diabetes. PLoS Medicine 7:1165–1177

    Google Scholar 

  5. Rossini AA, Greiner DL, Mordes JP (1999) Induction of immunologic tolerance for transplantation. Physiol Rev 79:99–141

    CAS  PubMed  Google Scholar 

  6. Hammerman MR (2005) Windows of opportunity for organogenesis. Transpl Immunol 15:1–8

    CAS  PubMed  Google Scholar 

  7. Hammerman MR (2000) Transplantation of renal precursor cells: a new therapeutic approach. Pediatr Nephrol 14:513–517

    CAS  PubMed  Google Scholar 

  8. Foglia RP, LaQuaglia M, Statter MB, Donahoe PK (1986) Fetal allograft survival in immunocompetent recipients is age dependent and organ specific. Ann Surg 204:402–410

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Velasco A, Hegre OD (1989) Decreased immunogenicity of fetal kidneys: the role of passenger leukocytes. J Pediatr Surg 24:59–63

    CAS  PubMed  Google Scholar 

  10. Dekel B, Burakova T, Marcus H, Shezen E, Polack S, Canaan A, Paswell JH, Reisner Y (1997) Engraftment of human kidney tissue in rat radiation chimera: I A new model of human kidney allograft rejection. Transplantation 64:1541–1550

    CAS  PubMed  Google Scholar 

  11. Dekel B, Burakova T, Ben-Hur H, Hadar M, Oren R, Laufer J, Reisner Y (1997) Engraftment of human kidney tissue in rat radiation chimera: II Human fetal kidneys display reduced immunogenicity to adoptively transferred human peripheral blood mononuclear cells and exhibit rapid growth and development. Transplantation 64:1550–1558

    CAS  PubMed  Google Scholar 

  12. Statter M, Fahrner KJ, Barksdale EM, Parks DE, Flavell RA, Donahoe PK (1989) Correlation of fetal kidney and testis congenic graft survival with reduced major histocompatibility complex burden. Transplantation 47:651–660

    CAS  PubMed  Google Scholar 

  13. Dekel B, Marcus H, Herzel BH, Bocher WO, Passwell JH, Reisner Y (2000) In vivo modulation of the allogeneic immune response by human fetal kidneys: The role of cytokines, chemokines, and cytolytic effector molecules. Transplantation 69:1470–1478

    CAS  PubMed  Google Scholar 

  14. Sariola H, Ekblom P, Lehtonen E, Saxen L (1983) Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane. Dev Biol 96:427–435

    CAS  PubMed  Google Scholar 

  15. Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, Aviel-Ronen S, Rechavi G, Friedman N, Kaminski N, Passwell JH, Reisner Y (2003) Human and porcine early kidney precursors as a new source for transplantation. Nat Med 9:53–60

    CAS  PubMed  Google Scholar 

  16. Dekel B, Amariglio F, Kaminski N, Schwartz A, Goshen E, Arditti FD, Tsarfaty I, Passwell JH, Reisner R, Rechavi G (2002) Engraftment and differentiation of human renal anlagen into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney. J Am Soc Nephrol 13:977–990

    CAS  PubMed  Google Scholar 

  17. Netter FH (1997) Anatomy structure and embryology In: Becker EL, Churg J (eds) The Netter collection of medical illustrations, vol 6, kidneys ureter and bladder. Novartis: Pittsburgh, pp 2–35

    Google Scholar 

  18. Rogers SA, Hammerman MR (2001) Transplantation of rat metanephroi into mice. Am J Physiol 280:R1865–R1869

    CAS  Google Scholar 

  19. Takeda S, Rogers SA, Hammerman MR (2006) Differential origin for endothelial and mesangial cells after transplantation of pig fetal renal primordia into rat. Transpl Immunol 15:211–215

    CAS  PubMed  Google Scholar 

  20. Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, Takahashi M, Terada Y, Eto Y, Kawamura T, Osumi N, Hosoya T (2005) Human mesenchymal stem cells in rodent whole embryo culture are reprogrammed to contribute to kidney tissues. Proc Nat Acad Sci USA 102:3296–3300

    CAS  PubMed  Google Scholar 

  21. Yokoo T, Fukui A, Ohashi T, Miyazaki Y, Utsunomiya Y, Kawamura T, Hosoiya T, Okabe M, Kobayashi E (2006) Xenobiotic kidney organogenesis from human mesencymal stem cells using a growing rodent embryo. J Am Soc Nephrol 17:1026–1034

    PubMed  Google Scholar 

  22. Rogers SA, Lowell JA, Hammerman NA, Hammerman MR (1998) Transplantation of developing metanephroi into adult rats. Kidney Int 54:27–77

    CAS  PubMed  Google Scholar 

  23. Rogers SA, Powell-Braxton L, Hammerman MR (1999) Insulin-like growth factor I regulates renal development in rodents. Dev Genet 24:293–298

    CAS  PubMed  Google Scholar 

  24. Rogers SA, Liapis H, Hammerman MR (2001) Transplantation of metanephroi across the major histocompatibility complex in rats. Am J Physiol 280:R132–R136

    CAS  Google Scholar 

  25. Rogers SA, Hammerman MR (2001) Transplantation of metanephroi after preservation in vitro. Am J Physiol 281:R661–RR665

    CAS  Google Scholar 

  26. Hammerman MR (2002) Transplantation of developing kidneys. Transplant Rev 16:62–71

    Google Scholar 

  27. Rogers SA, Hammerman MR (2004) Prolongation of life in anephric rats following de novo renal organogenesis. Organogenesis 1:22–25

    PubMed  PubMed Central  Google Scholar 

  28. Marshall D, Bottomley M, Symonds K, Brenchley PEC, Bravery CA (2005) Transplantation of metanephroi to sites within the abdominal cavity. Transplant Proc 37:194–197

    CAS  PubMed  Google Scholar 

  29. Marshall D, Dilworth MR, Clancy M, Bravery CA, Ashton N (2007) Increasing renal mass improves survival in anephric rats following metanephros transplantation. Exp Physiol 92:263–271

    CAS  PubMed  Google Scholar 

  30. Armstrong SR, Campbell GR, Campbell JH, Little MH (2005) Establishment of metanephros transplantation in mice highlights contributions by both nephrectomy and pregnancy to developmental progression. Exp Nephrol 101:e155–e164

    Google Scholar 

  31. Rogers SA, Talcott M, Hammerman MR (2003) Transplantation of pig renal anlagen. ASAIO J 49:48–52

    PubMed  Google Scholar 

  32. Sachs DH (1994) The pig as a potential xenograft donor. Vet Immunol Immunopathol 43:185–191

    CAS  PubMed  Google Scholar 

  33. Ibrahim Z, Busch J, Awwad M, Wagner R, Wells K, Cooper DKC (2006) Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation 13:488–499

    PubMed  Google Scholar 

  34. Cozzi E, Bhatti F, Schmoekel M, Chavez G, Smith KG, Zaidi A, Bradley JR, Thiru S, Goddard M, Vial C, Ostlie D, Wallwork J, White D, Friend PJ (2000) Long-term survival of nonhuman primates receiving life-supporting transgenic porcine kidney xenografts. Transplantation 70:15–21

    CAS  PubMed  Google Scholar 

  35. Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M, O’Malley P, Nobori S, Vagefi PA, Patience C, Fishman J, Cooper DKC, Hawley RJ, Greenstein J, Schuurman HJ, Awwad M, Sykes M, Sachs DH (2005) Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha 1,3 galactosyltransferase donors and the cotransplantation of vascularized thymic tissue. Nat Med 11:32–34

    CAS  PubMed  Google Scholar 

  36. Rogers SA, Liapis H, Hammerman MR (2005) Normalization of glucose post-transplantation of pig pancreatic anlagen into nonimmunosuppressed diabetic rats depends on obtaining anlagen prior to embryonic day 35. Transpl Immunol 14:67–75

    CAS  PubMed  Google Scholar 

  37. Woolf AS (1998) Origin of the glomerular capillaries: Is the verdict in? Exp Nephrol 6:17–21

    CAS  PubMed  Google Scholar 

  38. Hyink DP, Tucker DC, St John PL, Leardkamolkarn V, Accaviti MA, Abrass CA, Abrahamson DR (1996) Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. Am J Physiol 270:F886–F889

    CAS  PubMed  Google Scholar 

  39. Rogers SA, Droege D, Dusso A, Hammerman MR (2004) Incubation of metanephroi with vitamin D increases numbers of glomeruli. Organogenesis 1:52–54

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sorenson CM, Rogers SA, Korsmeyer SJ, Hammerman MR (1995) Fulminant metanephric apoptosis and abnormal kidney development in bcl-2-deficient mice. Am J Physiol 268:F73–F81

    CAS  PubMed  Google Scholar 

  41. Hammerman MR (1998) Regulation of cell survival during renal development. Pediatr Nephrol 12:596–602

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Washington University George M. O’Brien Center DK079333 and grant 1-2005-110 from the Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc R. Hammerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammerman, M.R. Transplantation of renal primordia: renal organogenesis. Pediatr Nephrol 22, 1991–1998 (2007). https://doi.org/10.1007/s00467-007-0554-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0554-7

Keywords

Navigation