Skip to main content
Log in

Studies of crystallinity of Scots pine and Norway spruce cellulose

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The variation in the mass fraction of crystalline cellulose (crystallinity of wood), the intrinsic crystallinity of cellulose, and the thickness of cellulose crystallites in early wood of Norway spruce [Picea abies (L.) Karst.], and Scots pine (Pinus sylvestris L.) grown in Finland were studied using wide angle X-ray scattering and nuclear magnetic resonance spectroscopy. The mass fraction of crystalline cellulose in wood increased slightly with the distance from the pith and was about 30±4% in mature wood of both species. The crystallinity of cellulose and the thickness of cellulose crystallites were almost constant for both species. The crystallinity of cellulose was 52±3% for both species and the average thickness of the cellulose crystallites was 32±1 Å and 31±1 Å for Norway spruce and Scots pine, respectively. The mass fraction of cellulose in wood, calculated from the crystallinity values, increased with the distance from the pith for both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahtee M, Hattula T, Mangs J, Paakkari T (1983) An X-ray diffraction method for determination of crystallinity in wood pulp. Pap Puu 8:475–480

    Google Scholar 

  • Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley, New York, pp 137–197

  • Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparison of different measuring techniques. J Wood Sci 46:343–349

    Google Scholar 

  • Andersson, S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J. Wood Sci 49:531–537

    Google Scholar 

  • Anttonen S, Manninen AM, Saranpää P, Kainulainen P, Linder S, Vapaavuori E (2002) Effects of long-term nutrient optimisation of stem wood chemistry in Picea abies. Trees 16:386–394

    Article  CAS  Google Scholar 

  • Atalla, RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19

    Article  CAS  PubMed  Google Scholar 

  • Baltá-Calleja FJ, Vonk. CG (1989) X-ray scattering of synthetic polymers. Elsevier, Amsterdam, pp 175–204

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. For Prod J. 44:43–48

    Google Scholar 

  • Costa e Silva J, Nielsen BH, Rodrigues J, Pereira H, Wellendorf H (1999) Rapid determination of the lignin content in Sitka spruce [Picea sitchensis (Bong.) Carr.] wood by Fourier transform infrared spectrometry. Holzforschung 53:597–602

    Google Scholar 

  • Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, New York, pp 101–102

  • Donaldson LA, Burdon RD (1995) Clonal variation and repeatability of microfibril angle in Pinus radiata. N Z J For Sci 25:164–174

    Google Scholar 

  • Dwianto W, Tanaka F, Inoue M, Norimoto M (1996) Crystallinity changes of wood by heat or steam treatment. Wood Res 83:47–49

    CAS  Google Scholar 

  • Evans R, Newman RH, Roick UC, Suckling ID, Wallis FA (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49:498–504

    CAS  Google Scholar 

  • Fengel D (1978) Über die fibrilläre Structur von Cellulose aus Holz. Holzforschung 32:37–44

    CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood chemistry, ultrastructure, reactions. De Gruyter, New York, pp 26–27, 56

  • Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    CAS  Google Scholar 

  • Gindl W, Teischinger A (2002) Axial compression strength of Norway spruce related to structural variability and lignin content. Composites A 33:1623–1628

    Article  Google Scholar 

  • Gindl W, Gupta HS, Grünwald C (2002) Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation. Can J Bot 80:1029–1033

    Article  Google Scholar 

  • Horii F, Hirai A, Kitamaru R, Sakurada, I (1985) Cross-polarization/magic-angle spinning 13C NMR studies of cotton and cupra rayon with different water contents. Cell Chem Technol 19:513–523

    CAS  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2000) A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55

    Article  CAS  Google Scholar 

  • Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: Comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    CAS  Google Scholar 

  • Kennedy RW (1995) Coniferous wood quality in the future—Concerns and strategies. Wood Sci Technol 29:321–338

    CAS  Google Scholar 

  • Kraus W, Nolze G (1996) Powder cell—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl Crystallogr 29:301–303

    Article  CAS  Google Scholar 

  • Kubojima Y, Okano T, Ohta M (1997) Effect of annual ring widths on structural and vibrational properties of wood. Mokuzai Gakkaishi 43:634–641

    CAS  Google Scholar 

  • Leary GJ, Morgan KR, Newman RH (1987) Solid state carbon-13 nuclear magnetic resonance study of Pinus radiata wood. Appita J 40:181–184

    CAS  Google Scholar 

  • Lennholm H, Larsson T, Iversen, T (1994) Determination of cellulose Iα and Iβ in lignocellulosic materials. Carbohydr Res 261:119–131

    Article  CAS  Google Scholar 

  • Lichtenegger H, Reiterer A, Stanzl-Tschegg SE, Fratzl P (1999) Variation of cellulose microfibril angles in softwoods and hardwoods—a possible strategy of mechanical optimization. J Struct Biol 128:257–269

    Article  CAS  PubMed  Google Scholar 

  • Lotfy M, El-osta M, Kellogg RM, Foschi RO, Butters RG (1974) A mechanistic approach to crystallite length as related to cell-wall structure. Wood Fiber 6:36–45

    Google Scholar 

  • Marton R, Rushton P, Sacco JS, Sumiya K (1972) Dimensions and ultrastructure in growing fibers. Tappi 55:1499–1504

    CAS  Google Scholar 

  • Mazet JF, Nepveu G (1991) Relations entre caractéristiques de retrait et densité du bois chez le pinsylvestre, le sapin pectiné et l’épicéa commun. Ann Sci For 48:87–100

    Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  PubMed  Google Scholar 

  • Newman RH, Hemmingson JA (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44:351–355

    CAS  Google Scholar 

  • Newman RH, Hemmingson JA (1995) Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2:95–110

    CAS  Google Scholar 

  • Nishimura H, Okano T, Asano I (1982) Fine structure of wood cell walls. IV. Size and disorder parameter of cellulose crystallites in Akamatsu wood and ramie fibers. Mokuzai Gakkaishi 28:659–668

    CAS  Google Scholar 

  • Nomura T, Yamada T (1972) Structural observation on wood and bamboo by X-ray. Wood Res 52:1–12

    Google Scholar 

  • Paakkari T, Serimaa R (1984) A study of the structure of wood cells by X-ray diffraction. Wood Sci Technol 18:79–85

    Google Scholar 

  • Paakkari T, Blomberg M, Serimaa R, Järvinen M (1988) A texture correction for quantitative X-ray powder diffraction analysis of cellulose. J Appl Crystallogr 21:393–397

    Article  CAS  Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology, structure, identification, properties, and uses of the commercial woods of the United States and Canada, 4th edn. McGraw-Hill, New York

  • Rissanen A, Sirviö J (2000) Männyn (Pinus sylvestris) ja kuusen (Picea abies) puuaineen ja -kuitujen ominaisuuksien vaihtelu. Publication 23. Department of Forest Resource Management, University of Helsinki

  • Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. 14:1180–1185

  • Sahlberg U, Salmen L, Oscarsson A (1997) The fibrillar orientation in the S2-layer of wood fibres as determined by X-ray diffraction analysis. Wood Sci Technol 31:77–86

    Article  CAS  Google Scholar 

  • Sanio K (1872) Ueber die Grösse der Holssellen bei der gemeinen Kiefer (Pinus sylvestris). Jahrb Wiss Bot 8:401–420

    Google Scholar 

  • Sarén M, Andersson S, Serimaa R, Saranpää P, Pesonen E, Paakkari T (2001) Structural variation of tracheids in Norway Spruce [Picea abies (L.) Karst.]. J Struct Biol 136:101–109

    Article  PubMed  Google Scholar 

  • Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry, fundamentals and applications, 2nd edn. Academic Press, San Diego

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    CAS  Google Scholar 

  • Tanaka F, Koshijima T, Okamura K (1981) Characterization of cellulose in compression and opposite woods of a Pinus densiflora tree grown under the influence of strong wind. Wood Sci Technol 15:265–273

    Google Scholar 

  • Teeäär R, Serimaa R, Paakkari T (1987) Crystallinity of cellulose, as determined by CP/MAS-NMR and XRD methods. Polymer Bull 17:231–237

    Google Scholar 

  • Vainio U, Andersson S, Serimaa R, Paakkari T, Saranpää P, Treacy M, Evertsen J (2002) Variation of microfibril angle between four provenances of Sitka spruce (Picea sitchensis [Bong.] Carr.). Plant Biol 4:27–33

    Google Scholar 

  • VanderHart DL, Atalla RH (1984) Studies of microstructures in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472

    CAS  Google Scholar 

  • Verkasalo E, Leban J-M (2002) MOE and MOR in static bending of small clear specimens of Scots pine, Norway spruce and European fir from Finland and France and their prediction for the comparison of wood quality. Pap Puu 84:332–340

    Google Scholar 

  • Vonk CG (1973) Computerization of Ruland’s X-ray method for determination of the crystallinity in polymers J Appl Crystallogr 6:148–152

    Google Scholar 

  • Vonk CG (1983) The determination of the crystallinity in glass-ceramic materials by the method of Ruland. J Appl Crystallogr 16:274–276

    Article  CAS  Google Scholar 

  • Wagenführ R, Scheiber C (1989) Holzatlas, 3rd edn. VEB, Leipzig, pp 656–665

  • Willis JM, Herring FG (1987) Effect of water in the 13C CP/MAS NMR spectrum of white spruce wood. Macromolecules 20:1554–1556

    CAS  Google Scholar 

  • Wodzicki TJ (2001) Natural factors affecting wood structure. Wood Sci Technol 35:5–26

    Article  CAS  Google Scholar 

  • Zobel BJ, Jett JB (1995) Genetics of wood production. Springer, Berlin Heidelberg New York, pp 13–16

Download references

Acknowledgements

The financial support of the Academy of Finland and Jenny and Antti Wihuri Foundation are gratefully acknowledged. Dr. Bo Hortling is thanked for the sulphate lignin sample and Dr. Kaija Jokela for assistance in data analysis. Mr. Tapio Järvinen is thanked for preparing the wood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritva Serimaa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, S., Wikberg, H., Pesonen, E. et al. Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees 18, 346–353 (2004). https://doi.org/10.1007/s00468-003-0312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-003-0312-9

Keywords

Navigation