Skip to main content

Advertisement

Log in

Small and large scale fluctuations in atmospheric wind speeds

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Atmospheric wind speeds and their fluctuations at different locations (onshore and offshore) are examined. One of the most striking features is the marked intermittency of probability density functions (PDF) of velocity differences, no matter what location is considered. The shape of these PDFs is found to be robust over a wide range of scales which seems to contradict the mathematical concept of stability where a Gaussian distribution should be the limiting one. Motivated by the non-stationarity of atmospheric winds it is shown that the intermittent distributions can be understood as a superposition of different subsets of isotropic turbulence. Thus we suggest a simple stochastic model to reproduce the measured statistics of wind speed fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In the following the term ‘isotropic turbulence’ instead of ‘homogeneous, isotropic and stationary turbulence’ will be used.

  2. Normally Θ and T denote length scales. For constant mean velocities and applying Taylor’s hypothesis of frozen turbulence length can be defined as time-scales as well. Here we will proceed with corresponding time scales.

  3. The differential probability to observe an increment u τ ε [u τu τ  +  du τ] is just given by p(u τ) du τ.

  4. Eq. 7 and other multifractal models yield very similar results because such low-order exponents as ζ4 and ζ2 are quite indistinguishable from each other.

References

  • Arneodo A, Baudet C et al (1996) Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhys Lett 34(6):411–416

    Article  CAS  Google Scholar 

  • Beck C (2004) Superstatistics in hydrodynamic turbulence. Physica D 193:195–207

    Article  Google Scholar 

  • Benzi R, Ciliberto S, Tripiccione R, Baudet C, Succi S (1993) Extended self-similarity in turbulent flows. Phys Rev E 48(1):R29–R32

    Article  Google Scholar 

  • Bierbooms W, Cheng P-W (2002) Stochastic gust model for design calculations of wind turbines. J Wind Eng Ind Aeorodyn 90(11):1237–1251

    Article  Google Scholar 

  • Böttcher F, Renner C, Waldl HP, Peinke J (2003) On the statistics of wind gusts. Bound Layer Meteor 108(1-2):163–173

    Article  Google Scholar 

  • Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley, New York

    Google Scholar 

  • Castaing B, Gagne Y, Hopfinger EJ (1990) Velocity probability density functions of high Reynolds number turbulence. Physica D 46(2):177–200

    Article  Google Scholar 

  • Chabaud B, Naert A, Peinke J, Chilla F, Castaing B, Hébral B (1994) Transition toward developed turbulence. Phys Rev Lett 73(24):3227–3230

    Article  CAS  Google Scholar 

  • Eggleston ED, Clark RN (2000) Cut-in note 1: wind speed power spectrum analysis for bushland, Texas, USA. Wind Eng 24(1):49–52

    Article  Google Scholar 

  • Frisch U (1995) Turbulence. The legacy of of A. N. Kolmogorov. Cambridge University Press

  • Hohlen H, Liersch J (1998) Synchrone Messkampagnen von Wind- und Windkraftanlagendaten am Standort FH Ostfriesland, Emden. DEWI Magazine 12:66–74

    Google Scholar 

  • van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14:160–164

    Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in an incompressible viscous flow for very high Reynolds numbers. Dokl Akad Nauk SSSR 305:301–305

    Google Scholar 

  • Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85

    Article  Google Scholar 

  • Lange B, Barthelmie R, Hojstrup J (2001) Description of rodsand field measurement

  • Lévy P (1954) Théorie de l’addition des variables aléatoires. Paris, Gauthier-Villars, 2e édition

  • Lovejoy S, Schertzer D, Stanway JD (2001) Direct evidence of multifractal atmospheric cascades from planetary scales down to 1 km. Phys Rev Lett 86(22):5200–5203

    Article  CAS  Google Scholar 

  • Lück St (2000) Skalenaufgelöste Experimente und statistische Analysen von turbulenten Nachlaufströmungen. Ph.D. Thesis, Carl-von-Ossietzky University of Oldenburg, 26111 Oldenburg, Germany

  • Mellinghoff H (2001) Data evaluation of a wind measurement equipped with cup and sonic anemometers at Oberzeiring, Austria. Report No.: DEWI-SO 0110-19

  • Paul W, Baschnagel J (1999) Stochastic processes—from physics to finance. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Peinke J, Böttcher F, Barth St (2004) Anomalous statistics in turbulence, financial markets and other complex systems. Ann Phys 13(7-8):450–460

    Article  Google Scholar 

  • Ragwitz M, Kantz H (2001) Indispensable finite time corrections for Fokker–Planck equations from time series data. Phys Rev Lett 87(25):254501

    Article  CAS  Google Scholar 

  • Renner C, Peinke J, Friedrich R (2001) Markov properties of small scale turbulence. J Fluid Mech 433:383–409

    CAS  Google Scholar 

  • She ZS, Leveque E (1994) Universal scaling laws in fully developed turbulence universal scaling laws. Phys Rev Lett 72(3-4):336–339

    Article  Google Scholar 

  • Sornette D (2000) Critical phenomena in natural sciences. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stolovitzky G, Kailasnath P, Sreenivasan KR (1992) Kolmogorov’s refined similarity hypotheses. Phys Rev Lett 69(8):1178–1181

    Article  Google Scholar 

  • Trevino G, Andreas EL (2000) Averaging intervals for spectral analysis of nonstationary turbulence. Bound Layer Meteor 95(2):231–247

    Article  Google Scholar 

  • Yakhot V (1998) Probability density and scaling exponents of the moments of longitudinal velocity difference in strong turbulence. Phys Rev E 57(2):1737–1751

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge helpful discussions with M. Siefert and B. Lange. For data supply we further acknowledge Risø National Laboratory (offshore site funded by Energi E2/Seas), Tauernwind Windkraftanlagen GmbH, Energiewerkstatt GmbH, J. Cleve and K. R. Sreenivasan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Böttcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, F., Barth, S. & Peinke, J. Small and large scale fluctuations in atmospheric wind speeds. Stoch Environ Res Ris Assess 21, 299–308 (2007). https://doi.org/10.1007/s00477-006-0065-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-006-0065-2

Keywords

Navigation