Skip to main content
Log in

Recent developments on the construction of spatio-temporal covariance models

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper briefly surveys some recent advances on how to construct spatio-temporal covariance functions, with the emphasis on the methods which can be used to derive covariance functions but not on a summary list of particular closed-form covariance functions. The advantages and shortcomings of some methods are discussed, and a number of proposals for future research are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banerjee S, Gelfand AE, Sirmans CF (2003) Directional rates of change under spatial process models. J Am Stat Assoc 98:946–954

    Article  Google Scholar 

  • Bartlett MS (1975) The statistical analysis of spatial pattern. Chapman and Hall, London

    Google Scholar 

  • Brix A, Chadeuf J (2002) Spatio-temporal modelling of weeds by shot-noise G Cox processes. Biometric J 44:83–99

    Article  Google Scholar 

  • Brown PE, Kåresen KF, Roberts GO, Tonellato S (2000) Blur-generated non-separable space-time models. J R Stat Soc B 62:847–860

    Article  Google Scholar 

  • Brown PE, Diggle PJ, Lord ME, Young PC (2001) Space-time calibration of radar rainfall data. Appl Stat 50:221–241

    Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Google Scholar 

  • Christakos G (1986) Space transformations in the study of multidimensional functions in the hydrologic sciences. Adv Water Resour 9:42–48

    Article  Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, Oxford

    Google Scholar 

  • Christakos G, Hristopulos DT (1998) Spatiotemporal environmental health modelling: tractatus stochasticus. Kluwer, Dordrecht

    Google Scholar 

  • Cowpertwait PJ (1998) A generalized spatial-temporal model of rainfall based on a clustered point process. Proc R Soc Lond A 450:165–175

    Google Scholar 

  • Cressie N, Huang HC (1999) Classes of non-separable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94:1330–1340 [Correction: (2001) 96: 784]

    Article  Google Scholar 

  • Cressie N, Wikle CK (2002) Space-time Kalman filter. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environments, vol. 4. Wiley, New York pp 2045–2049

  • De Iaco S, Myers DE, Posa D (2002) Nonseparable space-time covariance models: some parametric families. Math Geol 34:23–42

    Article  Google Scholar 

  • Dietrich CR (1995) A simple and efficient space domain implementation of the turning bands method. Water Resour Res 31:147–156

    Article  Google Scholar 

  • Doob JL (1953) Stochastic processes. Wiley, New York

    Google Scholar 

  • Fink M (1992) Time reversal of ultrasonic fields—part I: basic principles. IEEE Trans Ultrasonics Ferroelectrics Frequency Control 39:555–566

    Article  CAS  Google Scholar 

  • Fink M (1997) Time reversed acoustics. Phys Today 50:34–40

    Article  Google Scholar 

  • Fishman PM, Snyder DL (1976) The statistical analysis of space-time point processes. IEEE Trans Inform Theory IT 22:257–274

    Article  Google Scholar 

  • Frisch, U (1995) Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge

    Google Scholar 

  • Fuentes M (2002a) Spectral methods for nonstationary spatial processes. Biometrika 89:197–210

    Article  Google Scholar 

  • Fuentes M (2002b) Interpolation of nonstationary air pollution process: a spatial spectral approach. Stat Model 2: 281–298

    Article  Google Scholar 

  • Gama S, Vergassola M, Frisch U (1994) Negative eddy viscosity in isotropically forced two-dimensional flow: linear and nonlinear dynamics. J Fluid Mech 260:95–126

    Article  Google Scholar 

  • Gay R, Heyde CC (1990) On a class of random field model which allows long range dependence. Biometrika 77:401–403

    Article  Google Scholar 

  • Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 97:590–600

    Article  Google Scholar 

  • Handcock MS, Wallis JR (1994) An approach to statistical spatial-temporal modeling of meteorological fields (with comments and a rejoinder by Handcock). J Am Stat Assoc 89:368–390

    Article  Google Scholar 

  • Haas TC (1998) Statistical assessment of spatio-temporal pollutant trends and meteorological transport models. Atmos Environ 32: 1865–1879

    Article  CAS  Google Scholar 

  • Haas TC (2002) New systems for modeling, estimating, and predicting a multivariate spatio-temporal process. Envirometrics 13:311–332

    Article  CAS  Google Scholar 

  • Heine V (1955) Models for two-dimensional stationary stochastic processes. Biometrika 42:170–178

    Google Scholar 

  • Jones RH, Zhang Y (1997) Models for continuous stationary space-time processes. In: Gregoire TG et al (eds) Modelling longitudinal and spatially correlated data, lecture notes in statistics 122: 289–298. Springer, Heidelberg

  • Kashyap RL (1984) Characterization and estimation of two-dimensional ARMA models. IEEE Trans Inform Theory IT 30:736–745

    Article  Google Scholar 

  • Kelbert, MYa, Leonenko NN, Ruiz-Medina MD (2005) Fractional random fields associated with stochastic fractional heat equations. Adv Appl Probab 37:108–133

    Article  Google Scholar 

  • Kiiveri HT, Campbell NA (1989) Covariance models for lattice data. Aust J Stat 31:62–77

    Article  Google Scholar 

  • Knorr-Held L (2000) Bayesian modelling of inseparable space-time variations in disease risk. Stat Med 19:2555–2567

    Article  CAS  Google Scholar 

  • Kolovos A, Christakos G, Hristopulos DT, Serre ML (2004) Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Adv Water Res 27:815–830

    Article  CAS  Google Scholar 

  • Kyriakidis PC, Journel AG (1999) Geostatistical space-time models: a review. Math Geol 31: 651–684 [Correction: (2000) 32: 893]

    Article  Google Scholar 

  • Li S, McLaughlin D (1995) Using the nonstationary spectral method to analyze flow through heterogeneous trending media. Water Resour Res 31:541–551

    Article  Google Scholar 

  • Ma C (2002) Spatio-temporal covariance functions generated by mixtures. Math Geol 34:965–975

    Article  Google Scholar 

  • Ma C (2003a) Families of spatio-temporal stationary covariance models. J Stat Plann Infer 116:489–501

    Article  Google Scholar 

  • Ma C (2003b) Spatio-temporal stationary covariance models. J Multivariate Anal 86:97–107

    Article  Google Scholar 

  • Ma C (2004) Spatial autoregression and related spatio-temporal models. J Multivariate Anal 88:152–162

    Article  Google Scholar 

  • Ma C (2005a) Linear combinations of space-time covariance functions and variograms. IEEE Trans Signal Process 53:857–864

    Article  Google Scholar 

  • Ma C (2005b) Semiparametric spatio-temporal covariance models with the ARMA temporal margin. Ann Inst Math Stat 57:221–233

    Article  Google Scholar 

  • Martin, RJ (1997) A three-dimensional unilateral autoregressive lattice process. J Stat Plann Infer 59: 1–18

    Article  Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Prob 5:439–468

    Article  Google Scholar 

  • Matheron G (1989) The internal consistency of models in geostatistics. In: Armstrong M(ed) Geostatistics, vol. 1. pp 21–38

  • Meiring W, Guttorp P, Sampson PD (1998) Space-time estimation of grid-cell hourly ozone levels for assessment of a deterministic model. Environ. Ecol Stat 5: 197–222

    Article  Google Scholar 

  • Northrop P (1998) A clustered spatial-temporal model of rainfall. Proc R Soc Lond A 454:1875–1888

    Article  Google Scholar 

  • Oestges C, Kim AD, Papanicolaou G, Paulraj AJ (2005) Characterization of space-time focusing in time-reversed random fields. IEEE Trans Antennas Propagation 53:283–293

    Article  Google Scholar 

  • Oliver DS (1995) Moving average for Gaussian simulation in two and three dimensions. Math Geol 27:939–960

    Article  Google Scholar 

  • Onof C, Northrop P, Wheater HS, Isham V (1996) Spatiotemporal storm structure and scaling property analysis for modeling. J Geophys Res 101:26415–26425

    Article  Google Scholar 

  • Renshaw E (1994) The linear spatial-temporal interaction process and its relation to 1/ω-noise. J R Stat Soc B 56:75–91

    Google Scholar 

  • Rodriguez-Iturbe I, Mejia JM (1974) The design of rainfall networks in time and space. Water Resour Res 10:713–729

    Article  Google Scholar 

  • Ruiz-Medina MD, Angulo JM, Anh VV (2003) Fractional generalized random fields on bounded domains. Stoch Anal Appl 21:465–492

    Article  Google Scholar 

  • Ruiz-Medina MD, Angulo JM, Anh VV (2004) Fractional random fields on domains with fractal boundary. Infinite Dimension Anal Quantum Prob Relat Top 7:395–417

    Article  Google Scholar 

  • Ruiz-Medina MD, Anh VV, Angulo JM (2001) Stochastic fractional-order differential models with fractal boundary conditions. Stat Prob Lett 54:47–60

    Article  Google Scholar 

  • Shkarofsky IP (1968) Generalized turbulence space-correlation and wave-number spectrum-function pairs. Can J Phys 46:2133–2153

    Google Scholar 

  • Stein ML (2005) Space-time covariance functions. J Am Stat Assoc 100:310–321

    Article  CAS  Google Scholar 

  • Storvik G, Frigessi A, Hirst D (2002) Stationary space-time Gaussian fields and their time autoregressive representation. Stat Model 2: 139–161

    Article  Google Scholar 

  • Stroud JR, Müller P, Sansó B (2001) Dynamic models for spatiotemporal data. J R Stat Soc B 63:673–689

    Article  Google Scholar 

  • Tanter M, Aubry JF, Gerber J, Thomas JL, Fink M (2001) Optimal focusing by spatio-temporal inverse filter. I. Basic principles. J Acoust Soc Am 110: 37–47

    Article  CAS  Google Scholar 

  • Vanmarcke E (1983) Random fields: analysis and synthesis. MIT Press, Cambridge

  • Vecchia AV (1985) A general class of models for stationary two-dimensional random processes. Biometrika 72: 281–291

    Article  Google Scholar 

  • Vecchia AV (1988) Estimation and model identification for continuous spatial processes. J R Stat Soc Ser B 50:297–312

    Google Scholar 

  • Vecchia AV (1992) A new method of prediction for spatial regression models with correlated errors. J R Stat Soc Ser B 54:813–830

    Google Scholar 

  • Weber RO, Talkner P (1993) Some remarks on spatial correlation function model. Mon Weather Rev 121:2611–2617 [Correction: 127: 576, 1999]

    Article  Google Scholar 

  • Wheater HS, Isham VS, Cox DR, Chandler RE, Kakou A, Northrop PJ, Oh L, Onof C, Rodriguez-Iturbe I (2000) Spatial-temporal rainfall fields: modeling and statistical aspects. Hydrol Earth Syst Sci 4:581–601

    Article  Google Scholar 

  • Whittle P (1954) On stationary processes in the plane. Biometrika 41: 434–449

    Google Scholar 

  • Whittle P (1956) On the variation of yield variance with plot size. Biometrika 43:337–343

    Google Scholar 

  • Whittle P (1962) Topographic correlation, power-law covariance functions, and diffusion. Biometrika 49:305–314

    Google Scholar 

  • Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5:117–154

    Article  Google Scholar 

  • Wikle CK, Cressie N (1999) A dimension-reduced approach to space-time Kalman filtering. Biometrika 86:815–829

    Article  Google Scholar 

  • Wikle CK, Milliff RF, Nychka D, Berliner LM (2001) Spatiotemporal hierarchical Bayesian modeling: tropical ocean surface winds. J Am Stat Assoc 96:382–397

    Article  Google Scholar 

  • Yaglom AM (1987) Correlation theory of stationary and related random functions. Springer, New York

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Nikolai Leonenko, Professor Jose Miguel Angulo, and the referee for their helpful comments that substantially improved the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C. Recent developments on the construction of spatio-temporal covariance models. Stoch Environ Res Risk Assess 22 (Suppl 1), 39–47 (2008). https://doi.org/10.1007/s00477-007-0154-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-007-0154-x

Keywords

Navigation