Skip to main content

Advertisement

Log in

Estimation of uncertainty sources in the projections of Lithuanian river runoff

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Apel H, Thieken AH, Merz B, Bloschl G (2004) Flood risk assessment and associated uncertainty. Nat Hazards Earth Syst Sci 4:295–308. doi:10.5194/nhess-4-295-2004

    Article  Google Scholar 

  • Arduino G, Reggiani P, Todini E (2005) Recent advances in flood forecasting and flood risk assessment. Hydrol Earth Syst Sci 9(4):280–284. doi:10.5194/hess-9-280-2005

    Article  Google Scholar 

  • Arguez A, Vose RS (2011) The definition of the standard WMO climate normal: the key to deriving alternative climate normals. Bull Am Meteor Soc 92:699–704. doi:http://dx.doi.org/10.1175/2010BAMS2955.1

  • Bergstrom S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch

    Google Scholar 

  • Bergstrom S, Carlsson B, Gardelin M, Lindstrom G, Petterson A, Rummukainen M (2001) Climate change impacts on runoff in Sweden: assessment by global climate models, dynamic downscaling and hydrological model. Clim Res 16:101–112. doi:10.3354/cr016101

    Article  Google Scholar 

  • Bergstrom S, Lindstrom G, Pettersson A (2002) Multi-variable parameter estimation to increase confidence in hydrological modelling. Hydrol Process 16:413–421. doi:10.1002/hyp.332

    Article  Google Scholar 

  • Booij MJ (2002) Appropriate hydrological modeling of climate change impacts on river flooding. In: Integrated assessment and decision support. Proceedings of the first biennial meeting of the international environmental modelling and software society, vol 1. Lugano, Switzerland, pp 446–451

  • Bryhn AC, Hakanson L, Eklund JM (2008) Variabilities and uncertainties in important coastal water variables. Vatten 64:259–272

    CAS  Google Scholar 

  • Di Baldassarre G, Montanari A (2009) Uncertainty in river discharge observations: a quantitative analysis. Hydrol Earth Syst Sci 13:913–921. doi: 10.5194/hess-13-913-2009

    Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley centre coupled model without flux adjustments. Clim Dynam 16:147–168. doi:10.1007/s003820050010

    Article  Google Scholar 

  • Götzinger J, Bárdossy A (2008) Generic error model for calibration and uncertainty estimation of hydrological models. Water Resour Res 44. doi:10.1029/2007WR006691

  • Ham JM (2002) Uncertainty analysis of the water balance technique for measuring seepage from animal waste lagoons. J Environ Qual 31:1370–1379. doi:10.2134/jeq2002.1370

    Article  CAS  Google Scholar 

  • Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Resour Assoc 36:387–397. doi:10.1111/j.1752-1688.2000.tb04276.x

    Article  Google Scholar 

  • Hofer E (1999) Sensitivity analysis in the context of uncertainty analysis for computationally intensive models. Comput Phys Commun 117(1–2):21–34. doi:10.1016/S0010-4655(98)00153-2

    Article  CAS  Google Scholar 

  • Hwang Y, Clark MP, Rajagopalan B (2011) Use of daily precipitation uncertainties in streamflow simulation and forecast. Stoch Environ Res Risk Assess 25(7):1–16. doi:10.1007/s00477-011-0460-1

    Article  Google Scholar 

  • Integrated Hydrological Modeling System Manual (2005) Version 5.8. SMHI

  • Jin X-L, Xu C-Y, Zhang Q, Singh VP (2010) Parameter and modelling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J Hydrol 383:147–155. doi:10.1016/j.jhydrol.2009.12.028

    Article  Google Scholar 

  • Kloos M, Hofer E (2002) SUSA Version 3.5, User’s guide and tutorial, Gesellschaft fur Anlagen und Reaktorsicherheit (GRS) mbH, Cologne

  • Kopustinskas V, Alzbutas R, Augutis J (2007) Statistical methods of uncertainty and sensitivity analysis for mathematical model output. Energetika 3:10–15 (in Lithuanian)

    Google Scholar 

  • Kriauciuniene J, Meilutyte-Barauskiene D, Rimkus E, Kazys J, Vincevicius A (2008) Climate change impact on hydrological processes in Lithuanian Nemunas river basin. Baltica 21(1–2):51–61

    Google Scholar 

  • Kriauciuniene J, Sarauskiene D, Gailiusis B (2009) Estimation of uncertainty in catchment-scale modeling of climate change impact (case of the Merkys River, Lithuania). Environ Res Eng Manag 47(1):30–39

    Google Scholar 

  • Krzykacz B, Hofer E, Kloos M (1994) A software system for uncertainty and sensitivity analysis of results from computer models. In: Proceedings of International Conference on PSAM-II, 2, Session 063, San Diego, pp 20–25

  • Lawrence D, Haddeland I (2011) Uncertainty in hydrological modelling of climate change impacts in four Norwegian catchments. Hydrol Res 42(6):457–471. doi:10.2166/nh.2011.010

    Article  Google Scholar 

  • Lawrence D, Haddeland I, Langsholt E (2009) Calibration of HBV hydrological models using PEST parameter estimation. Norwegian Water Resources and Energy Directorate. Report No 1

  • Li Z, Shao Q, Xu Z, Cai X (2010) Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: a case study of SWAT model applied to Yingluoxia watershed in northwest China. J Hydrol 385(1–4):76–83. doi:10.1016/j.jhydrol.2010.01.025

  • Maskey S (2007) Modelling uncertainty in flood forecasting systems (Kindle edn). Kindle eBook

  • Montanari A (2007) What do we mean by “uncertainty”? The need for a consistent wording about uncertainty assessment in hydrology. Hydrol Proc 21:841–845. doi:10.1002/hyp.6623

    Article  Google Scholar 

  • Myers JL, Well A (2003) Research design and statistical analysis, 2nd edn. LEA, Mahwah

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Pastres R, Ciavatta S (2005) A comparison between the uncertainties in model parameters and in forcing functions: its application to a 3D water-quality model. Environ Model Softw 20:981–989. doi:10.1016/j.envsoft.2004.09.010

    Article  Google Scholar 

  • Rimkus E, Kazys J, Juneviciute J, Stonevicius E (2007) Climate change predictions for 21st century in Lithuania. Geographia 43(2):37–47 (In Lithuanian)

    Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. Part I: model description. Max Planck Institut Report 349. Max-Planck-Institut für Meteorologie, Hamburg

  • Salah AM, Fields PJ, Woodruff Miller A (2005) Simulating uncertainty in mass balance modelling for fresh water reservoirs; case study: deer creek reservoir, Utah. In: Proceedings of the 2005 winter simulation conference, 2385–2394

  • Selle B, Hannah M (2010) A bootstrap approach to assess parameter uncertainty in simple catchment models. Environ Model Softw 25:919–926. doi:10.1016/j.envsoft.2010.03.005

    Article  Google Scholar 

  • Shbaita H, Rode M (2009) Comparison between GLUE and MCMC uncertainty methods including autocorrelation. Geophys Res Abstr 11:5356

    Google Scholar 

  • Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill, New York, pp 187–287

    Google Scholar 

  • Veijalainen N, Lotsari E, Alho P, Vehvilainen B, Kayhko J (2010) National scale assessment of climate change impacts on flooding in Finland. J Hydrol 391:333–350. doi:10.1016/j.jhydrol.2010.07.035

    Article  Google Scholar 

  • Wagener T, Gupta H, Yatheendradas S, Goodrich D, Unkrich C, Schaffner M (2007) Understanding sources of uncertainty in flashflood forecasting for semi-arid regions. Quantification and reduction of predictive uncertainty for sustainable water resources management. In: Proceedings of symposium HS2004 at IUGG2007, Perugia, vol 313. IAHS Publ., Wallingford, pp 204–212

  • Werner M (2001) Uncertainty in flood extent estimation due to uncertain parameters. XXIX IAHR congress proceedings Beijing

  • Wickett T, Sweet D, Neill A, D’Auria F, Galassi G, Belsito S, Ingegneri M, Gatta P, Glaeser H, Skorek T, Hofer E, Kloos M, Chojniacki E, Ounsy M, Perez Lage C, Sanchis Sánchez IJ (1998) Report of the uncertainty methods study for advanced best estimate thermal hydraulic code applications, yol. I–II. OECD/CSNI Report NEA/CSNI R (97) 35

  • Wilks SS (1941) Determination of sample sizes for setting tolerance limits. Ann Math Stat 12(1):91–96

    Article  Google Scholar 

  • World Meteorological Organization (2007) The role of climatological normals in a changing climate. WCDMP-No. 61, WMO-TD/No. 1377, Geneva

Download references

Acknowledgments

The research described in this paper was supported by COST (European Cooperation in Science and Technology) action ES0901 “European procedures for flood frequency estimation”. Special thanks to Prof. Sten Bergstrom (SMHI, Sweden) who allows us to use the HBV model for the evaluation of climate impact on the changes of the Lithuanian river runoff and to Dr. Deborah Lawrence (NVE, Norway), who gave us many useful advices on the understanding of the uncertainty in runoff modelling. The authors also thank Dr. Egidijus Rimkus and Dr. Justas Kažys (Vilnius University, Lithuania) for the data on climate scenarios of the Lithuanian territory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurate Kriauciuniene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriauciuniene, J., Jakimavicius, D., Sarauskiene, D. et al. Estimation of uncertainty sources in the projections of Lithuanian river runoff. Stoch Environ Res Risk Assess 27, 769–784 (2013). https://doi.org/10.1007/s00477-012-0608-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-012-0608-7

Keywords

Navigation