Skip to main content
Log in

A physical interpretation of the deterministic fractal–multifractal method as a realization of a generalized multiplicative cascade

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In this study, we attempt to offer a solid physical basis for the deterministic fractal–multifractal (FM) approach in geophysics (Puente, Phys Let A 161:441–447, 1992; J Hydrol 187:65–80, 1996). We show how the geometric construction of derived measures, as Platonic projections of fractal interpolating functions transforming multinomial multifractal measures, naturally defines a non-trivial cascade process that may be interpreted as a particular realization of a random multiplicative cascade. In such a light, we argue that the FM approach is as “physical” as any other phenomenological approach based on Richardson’s eddies splitting, which indeed lead to well-accepted models of the intermittencies of nature, as it happens, for instance, when rainfall is interpreted as a quasi-passive tracer in a turbulent flow. Although neither a fractal interpolating function nor the specific multipliers of a random multiplicative cascade can be measured physically, we show how a fractal transformation “cuts through” plausible scenarios to produce a suitable realization that reflects specific arrangements of energies (masses) as seen in nature. This explains why the FM approach properly captures the spectrum of singularities and other statistical features of given data sets. As the FM approach faithfully encodes data sets with compression ratios typically exceeding 100:1, such a property further enhances its “physical simplicity.” We also provide a connection between the FM approach and advection–diffusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barnsley MF (1988) Fractals everywhere. Academic Press, San Diego

    Google Scholar 

  • Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys 44(2):RG2003. doi:10.1029/2005RG000178

    Article  Google Scholar 

  • Cortis A (2007) Peclet-dependent memory kernels for transport in heterogeneous media. Phys Rev E 76:030102

    Article  Google Scholar 

  • Cortis A, Sivakumar B, Puente CE (2009) Encoding hydrologic information via a fractal geometric approach and its extensions. Stoch Environ Res Risk Assess 23:897–906

    Article  Google Scholar 

  • Deidda R, Grazia-Badas M, Piga E (2006) Space–time multifractality of remotely sensed rainfall fields. J Hydrol 322:2–13. doi:10.1016/j.jhydrol.2005.02.036

    Article  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen Physik 17(8):549–560

    Article  CAS  Google Scholar 

  • Ferraris L, Gabellani S, Parodi U, Rebora N, von Hardenberg J, Provenzale A (2003) Revisiting multifractality in rainfall fields. J Hydrometeor 4:544–551

    Article  Google Scholar 

  • Gupta VK, Waymire EC (1993) A statistical analysis of mesoscale rainfall as a random cascade. J Appl Meteor 32:251–267

    Article  Google Scholar 

  • Huang HH, Puente CE, Cortis A (2012) Geometric harnessing of precipitation records: reexamining four storms from Iowa City. Stoch Environ Res Risk Assess. doi:10.1007/s00477-012-0617-6

    Google Scholar 

  • Langousis A, Carsteanu AA, Deidda R (2013) A simple approximation to multifractal rainfall maxima using a generalized extreme value distribution model. Stoch Environ Res Risk Assess 27(6):525–1531

    Article  Google Scholar 

  • Lanza LG, Vuerich E (2009) The WMO field inter-comparison of rain intensity gauges. Atmos Res 94(4):534–543

    Article  Google Scholar 

  • Mandelbrot BB (1989) Multifractal measures especially for the geophysicist. In: Scholz CH, Mandelbrot BB (eds) Fractals in geophysics. Birkhauser Verlag, Basel

    Google Scholar 

  • Marsan D, Schertzer D, Lovejoy S (1996) Causal space-time multifractal processes: predictability and forecasting of rain fields. J Geophys Res 101(D21):26333–26346

    Article  Google Scholar 

  • Menabde M, Sivapalan M (2000) Modeling of rainfall time series and extremes using bounded random cascades and Levy-stable distributions. Water Resour Res 36(11):3293–3300

    Article  Google Scholar 

  • Meneveau C, Sreenivasan KR (1987) Simple multifractal cascade model for fully developed turbulence. Phys Rev Let 59:1424–1427

    Article  Google Scholar 

  • Obregón N, Puente CE, Sivakumar B (2002a) Modeling high resolution rain rates via a deterministic fractal–multifractal approach. Fractals 10(3):387–394

    Article  Google Scholar 

  • Obregón N, Sivakumar B, Puente CE (2002b) A deterministic geometric representation of temporal rainfall. Sensitivity analysis for a storm in Boston. J Hydrol 269(3–4):224–235

    Article  Google Scholar 

  • Puente CE (1992) Multinomial multifractals, fractal interpolators, and the Gaussian distribution. Phys Let A 161:441–447

    Article  Google Scholar 

  • Puente CE (1996) A new approach to hydrologic modeling: derived distributions revisited. J Hydrol 187:65–80

    Article  Google Scholar 

  • Puente CE (2004) A universe of projections: may Plato be right? Chaos, Solitons Fractals 19(2):241–253

    Article  Google Scholar 

  • Puente CE, Obregón N (1996) A deterministic geometric representation of temporal rainfall: results for a storm in Boston. Water Resour Res 32(9):2825–2839

    Article  Google Scholar 

  • Puente CE, Obregón N (1999) A geometric Platonic approach to multifractality and turbulence. Fractals 7(4):403–420

    Article  Google Scholar 

  • Puente CE, Sivakumar B (2003) A deterministic width function model. Nonlinear Processes Geophys 10(6):525–529

    Article  Google Scholar 

  • Puente CE, Sivakumar B (2007) Modeling hydrologic complexity: a case for geometric determinism. Hydrol Earth Syst Sci 11:721–724

    Article  Google Scholar 

  • Puente CE, Robayo O, Díaz MC, Sivakumar B (2001a) A fractal–multifractal approach to groundwater contamination. 1. Modeling conservative tracers at the Borden site. Stoch Environ Res Risk Assess 15(5):357–371

    Article  Google Scholar 

  • Puente CE, Robayo O, Sivakumar B (2001b) A fractal–multifractal approach to groundwater contamination. 2. Predicting conservative tracers at the Borden site. Stoch Environ Res Risk Assess 15(5):372–383

    Article  Google Scholar 

  • Puente CE, Obregón N, Sivakumar B (2002) Chaos and stochasticity in deterministically generated multifractal measures. Fractals 10(1):91–102

    Article  Google Scholar 

  • Salvadori G, Schertzer D, Lovejoy DS (2001) Multifractal objective analysis: conditioning and interpolation. Stoch Environ Res Risk Assess 15(4):261–283

    Article  Google Scholar 

  • Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling of multiplicative processes. J Geophys Res 92:9693–9714

    Article  Google Scholar 

  • Sivakumar B, Sharma A (2008) A cascade approach to continuous rainfall data generation at point locations. Stoch Environ Res Risk Assess 22(4):451–459

    Article  Google Scholar 

  • Veneziano D, Langousis A (2010) Scaling and fractals in hydrology. In: Sivakumar B, Berndtsson R (eds) Advances in data-based approaches for hydrologic modeling and forecasting. World Scientific, Singapore

    Google Scholar 

Download references

Acknowledgments

Bellie Sivakumar acknowledges the support from the Australian Research Council (ARC) through the Future Fellowship Grant (FT110100328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Puente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortis, A., Puente, C.E., Huang, HH. et al. A physical interpretation of the deterministic fractal–multifractal method as a realization of a generalized multiplicative cascade. Stoch Environ Res Risk Assess 28, 1421–1429 (2014). https://doi.org/10.1007/s00477-013-0822-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0822-y

Keywords

Navigation