Skip to main content
Log in

Prediction of PM10 and SO2 exceedances to control air pollution in the Bay of Algeciras, Spain

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In this paper, the authors apply different classification techniques in order to provide 24 h advance forecasts of the daily peaks of SO2 and PM10 concentrations in the Bay of Algeciras. K-nearest-neighbours, multilayer neural network with backpropagation and support vector machines (SVMs) are the classification methods used. The aim of this research is to obtain a suitable prediction model that would enable us to predict the peaks of pollutant concentrations in critical meteorological situations caused by the widespread existing industry and population in the area. A resampling strategy with twofold crossvalidation has been applied, using different quality indexes to evaluate the performance of the prediction models. SVM models achieved better true positive rate and accuracy (ACC) quality indexes. Results of ACC index value of 0.795 for PM10 and 0.755 for SO2 showed the ability of the model to predict peaks and non-peaks correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agirre-Basurko E, Ibarra-Berastegi G, Madariaga I (2006) Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environ Model Softw 21:430–446

    Article  Google Scholar 

  • Balaguer E, Camps i Valls G, Carrasco-Rodriguez JL, Soria E, del Valle-Tascon S (2002) Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks. Ecol Model 156:27–41

    Article  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, New York

    Google Scholar 

  • Boser BE, Guyon I, Vapnik V (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the 5th annual workshop on computational learning theory. ACM Press, Pittsburgh

  • Boznar M, Lesjak M, Mlakar P (1993) A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain. Atmos Environ 27:221–230

    Article  Google Scholar 

  • Caimcross EK, John J, Zunckel M (2007) A novel air pollution index based on the relative risk of daily mortality associated with short-term exposure to common air pollutants. Atmos Environ 41(38):8442–8454

    Article  Google Scholar 

  • Coman A, Ionescu A, Candau Y (2008) Hourly ozone prediction for a 24-h horizon using neural networks. Environ Model Softw 23:1407–1421

    Article  Google Scholar 

  • Corani G (2005) Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecol Model 185:513–529

    Article  Google Scholar 

  • Cover TM, Hart PE (1967) Nearest neighbour pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, New York

    Book  Google Scholar 

  • de Castro BMF, Manteiga WG (2008) Boosting for real and functional samples: an application to an environmental problem. Stoch Environ Res Risk Assess 22(1):27–37

    Article  Google Scholar 

  • Dimitriou K, Kassomenos PA, Paschalidou AK (2013) Assessing air quality with regards to its effect on human health in the European Union through air quality indices. Ecol Indic 27:108–115

    Article  CAS  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  • European Community, Council Directive 1999/39/EC of 22 April 1999 regulating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air, Official Journal of the European Communities L163, 0041–0060

  • Gocheva-Ilieva SG, Ivanov AV, Voynikova DS, Boyadzhiev DT (2013) Time series analysis and forecasting for air pollution in small urban area: an SARIMA and factor analysis approach. Stoch Environ Res Risk Assess. doi:10.1007/s00477-013-0800-4

    Google Scholar 

  • Goldberg MS, Burnett RT, Bailar JC, Brook J, Bonvalot Y, Tamblyn R, Singh R, Valois MF (2001) The association between daily mortality and ambient air particle pollution in Montreal, Quebec. Environ Res A86:12–25

    Article  Google Scholar 

  • Grivas G, Chaloulakou A (2006) Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos Environ 40:1216–1229

    Article  CAS  Google Scholar 

  • Hornik K, Stinchcombe M, Halbert W (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  • Jimenez-Come MJ, Muñoz E, García R, Matres V, Martin ML, Trujillo FJ, Turias IJ (2012) Pitting corrosion behaviour of austenitic stainless steel using artificial intelligence techniques. J Appl Log. doi:10.1016/j.jal.2012.07.005

    Google Scholar 

  • Kumar U, Jain VK (2010) ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch Environ Res Risk Assess 24:751–760

    Article  Google Scholar 

  • Li W, Yang M, Liang Z, Zhu Y, Mao W, Shi J, Chen Y (2013) Assessment for surface water quality in Lake Taihu Tiaoxi River Basin China based on support vector machine. Stoch Environ Res Risk Assess 27:1861–1870

    Article  Google Scholar 

  • Martin ML (2011) Modelos de predicción de contaminantes atmosféricos en la Bahía de Algeciras. PhD, University of Cadiz

  • Martin ML, Turias IJ, Gonzalez FJ, Galindo PL, Trujillo FJ, Puntonet CG, Gorriz JM (2008) Prediction of CO maximum ground level concentrations in the Bay of Algeciras, Spain using artificial neural networks. Chemosphere 70:1190–1195

    Article  CAS  Google Scholar 

  • Matias JM, Vaamonde A, Taboada J, Gonzalez-Manteiga W (2004) Support vector machines and gradient boosting for graphical estimation of a slate deposit. Stoch Environ Res Risk Assess 18:309–323

    Article  Google Scholar 

  • Muñoz E, Martín ML, Jiménez-Come MJ, Trujillo FJ, Turias IJ (2011) Prediction of peak concentrations of PM10 in the area of Campo de Gibraltar (Spain) using classification models. Soft computing models in industrial and environmental applications, 9th international conference. Advances in intelligent and soft computing, vol 87. Springer, Berlin

  • Nejadkoorki F, Baroutian S (2012) Forecasting extreme PM(10) concentrations using artificial neural networks. Int J Environ Res 6:277–284

    CAS  Google Scholar 

  • Norgaard M, Ravn O, Poulsen N, Hansen L (2000) Neural networks for modelling and control of dynamic systems. Springer, London

    Book  Google Scholar 

  • Nunnari G, Dorling S, Schlink U, Cawley G, Foxall R, Chatterton T (2004) Modelling SO2 concentration at a point with statistical approaches. Environ Model Softw 19:887–905

    Article  Google Scholar 

  • Pandolfi M, Gonzalez-Castanedo Y, Alastuey A, de la Rosa JD, Mantilla E, de la Campa AS, Querol X, Pey J, Amato F, Moreno T (2011) Source apportionment of PM10 and PM 2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environ Sci Pollut Res 18:260–269

    Article  CAS  Google Scholar 

  • Paschalidou AK, Karakitsios S, Kleanthous S, Kassomenos PA (2011) Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ Sci Pollut Res 18:316–327

    Article  CAS  Google Scholar 

  • Perez P, Reyes J (2006) An integrated neural network model for PM10 forecasting. Atmos Environ 40:2845–2851

    Article  CAS  Google Scholar 

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. Parallel distributed processing: explorations in the microstructure of cognition 1. MIT Press, Cambridge

    Google Scholar 

  • Schlink U, Dorling S, Pelikan E, Nunnari G, Cawley G, Junninen H, Greig A, Foxall R, Eben K, Chatterton T, Vondracek J, Richter M, Dostal M, Bertucco L, Kolehmainen M, Doyle M (2003) A rigorous inter-comparison of ground-level ozone predictions. Atmos Environ 37:3237–3253

    Article  CAS  Google Scholar 

  • Scholkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization and beyond. MIT Press, Cambridge

    Google Scholar 

  • Schwartz J, Dockery DW, Neas LM (1996) Is daily mortality associated specifically with fine particles? J Air Waste Manage Assoc 46:927–939

    Article  CAS  Google Scholar 

  • Seaman NL (2000) Meteorological modelling for air-quality assessments. Atmos Environ 34:2231–2259

    Article  CAS  Google Scholar 

  • Sunyer J, Ballester F, Le Tertre A, Atkinson R, Ayres JG, Forastiere F, Forsberg B, Vonk JM, Bisanti L, Tenías JM, Medina S, Schwartz J, Katsouyanni K (2003) The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe (The Aphea-II study). Eur Heart J 24(8):752–760

    Article  CAS  Google Scholar 

  • Turias IJ, Gonzalez FJ, Martin ML, Galindo PL (2006) A competitive neural network approach for meteorological situation clustering. Atmos Environ 40:532–541

    Article  CAS  Google Scholar 

  • Turias IJ, Gonzalez FJ, Martin ML, Galindo PL (2008) Prediction models of CO, SPM and SO2 concentrations in the Campo de Gibraltar Region, Spain: a multiple comparison strategy. Environ Monit Assess 143:131–146

    Article  CAS  Google Scholar 

  • Vapnik VN, Chervonenkis AY (1974) Theory of pattern recognition. Statistical problems of learning [in Russian]. Nauka, Moscow

    Google Scholar 

  • Vapnik VN, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M et al (eds) Advances in neural information processing systems, vol 9. MIT Press, Cambridge

    Google Scholar 

  • Wang Y, Guo S, Chen H, Zhou Y (2013) Comparative study of monthly inflow prediction methods for the Three Gorges Reservoir. Stoch Environ Res Risk Assess. doi:10.1007/s00477-013-0772-4

    Google Scholar 

  • Wilson WE, Suh HH (1997) Fine and coarse particles: concentration relationships relevant to epidemiological studies. J Air Waste Manage Assoc 47:1238–1249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported in part by a grant from the Andalusian Govern-ment through Fundación Campus Tecnológico de Algeciras (FCTA). Authors would like to thank the Environmental Agency of the Andalusian Government, which provided with all the monitoring data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Muñoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, E., Martín, M.L., Turias, I.J. et al. Prediction of PM10 and SO2 exceedances to control air pollution in the Bay of Algeciras, Spain. Stoch Environ Res Risk Assess 28, 1409–1420 (2014). https://doi.org/10.1007/s00477-013-0827-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0827-6

Keywords

Navigation