Skip to main content
Log in

Influences of ambient air pollutants and meteorological conditions on ozone variations in Kaohsiung, Taiwan

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The complex process of ozone formation, its precursor compounds (volatile organic compounds (VOCs) and nitrogen oxides (NOx)) emissions, accompanying with meteorological conditions, makes troposphere ozone difficult to control. This study applies dynamic factor analysis (DFA) to investigate the time series of ambient ozone concentrations and their associations with meteorological variables. The analyses were applied on the hourly data collected at the four monitoring stations in Kaohsiung (Taiwan) during the 72-h periods with three events in high and low ozone episodes in 2009. According to the optimal DFA model, NOx negatively control ozone variations in all events. Relative humidity (RH) only negatively influences the ozone fluctuations in low ozone episode. The sea–land wind speed (i.e. west direction) and air temperature positively affect ozone fluctuations in high ozone episode. CO significantly influences ozone fluctuations in main city area for high ozone episode and in all stations for low ozone episode. However, VOC did not significantly correlate with ozone fluctuations for both ozone episodes. The results show that ozone conditions of both episodes were in NOx-saturated regimes, where increased NOx would result in lower ozone. Temperature, RH, and sea–land wind speed can be treated as metrological variables, which significantly vary the concentrations of surface-level ozone. This study shows DFA can provide a quantitative insight into the temporal variations of CO, NOx, and meteorological conditions effects on ozone variations that will be a reference to air quality management in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul-Wahab SA, Bakheit CS, Al-Alawi SM (2005) Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ Model Softw 20:1263–1271

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Barros N, Toll I, Soriano C, Jiménez P, Borrego C, Baldasano JM (2003) Urban photochemical pollution in the Iberian peninsula: the Lisbon and Barcelona airsheds. J Air Waste Manag Assoc 53:347–359

  • Campo-Bescós MA, Muñoz-Carpena R, Kaplan DA, Southworth J, Zhu L, Waylen PR (2013) Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on savanna vegetation. PLoS One 8:e72348

    Article  Google Scholar 

  • Carter WPL (1994) Development of ozone reactivity scales for volatile organic compounds. J Air Waste Manag Assoc 44:881–899

    Article  CAS  Google Scholar 

  • Chang CC, Chena TY, Lina CY, Yuan CS, Liu SC (2005) Effects of reactive hydrocarbons on ozone formation in southern Taiwan. Atmos Environ 39:2867–2878

    Article  CAS  Google Scholar 

  • Chelani AB, Devotta S (2006) Air quality forecasting using a hybrid autoregressive and nonlinear model. Atmos Environ 40:1774–1780

    Article  CAS  Google Scholar 

  • Cheng WL (2002) Ozone distribution in coastal central Taiwan under sea-breeze conditions. Atmos Environ 36:3445–3459

    Article  CAS  Google Scholar 

  • Duan JC, Tan JH, Yang L, Wu S, Hao JM (2008) Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos Res 88:25–35

    Article  CAS  Google Scholar 

  • Erzini K (2005) Trends in NE Atlantic landings (southern Portugal): identifying the relative importance of fisheries and environmental variables. Fish Oceanogr 14:195–209

    Article  Google Scholar 

  • Felipe-Sotelo M, Gustems L, Hernández I, Terrado M, Tauler R (2006) Investigation of geographical and temporal distribution of tropospheric ozone in Catalonia (North–East Spain) during the period 2000–2004 using multivariate data analysis methods. Atmos Environ 40:7421–7436

    Article  CAS  Google Scholar 

  • Gabusi V, Volta M (2005) Seasonal modelling assessment of ozone sensitivity to precursors in northern Italy. Atmos Environ 39:2795–2804

    Article  CAS  Google Scholar 

  • Geddes JA, Murphy JG, Wang DK (2009) Long term changes in nitrogen oxides and volatile organic compounds in Toronto and the challenges facing local ozone control. Atmos Environ 43:3407–3415

    Article  CAS  Google Scholar 

  • Hastie DR, Narayan J, Schiller C, Niki H, Shepson PB, Sills DML, Taylor PA, Moroz WJ, Druummond JW, Reid N, Taylor R, Roussel PB, Melo OT (1999) Observational evidence for the impact of the lake breeze circulation on ozone concentrations in Southern Ontario. Atmos Environ 33:323–335

    Article  CAS  Google Scholar 

  • Highland Statistics (2000) Software package for multivariate analysis and multivariate time series analysis Version 2. Highland Statistics, Ltd., Newburgh, UK

  • Holland DM, Principe PP, Vorburger L (1999) Rural ozone: trends and exceedances at CASTNet sites. Environ Sci Technol 33:43–48

    Article  CAS  Google Scholar 

  • Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43:51–63

    Article  CAS  Google Scholar 

  • Jacob DJ, Logan JA, Gardner GM, Yevich RM, Spivakovsky CM, Wofsy SC, Sillman S, Prather MJ (1993) Factors regulating ozone over the United-States and its export to the global atmosphere. J Geophys Res 98:14817–14826

    Article  Google Scholar 

  • Kambezidis HD, Weidauer D, Melas D, Ulbricht M (1998) Air quality in the Athens Basin during sea breeze and non-sea breeze days using laser-remote-sensing technique. Atmos Environ 32:2173–2182

  • Kaplan D, Muñoz-Carpena R (2011) Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest. J Hydrol 398(3–4):221–234

    Article  Google Scholar 

  • Kaplan D, Muñoz-Carpena R, Ritter A (2010) Untangling complex shallow groundwater dynamics in the floodplain wetlands of a southeastern U.S. coastal river. Water Resour Res 46:W08528. doi:10.1029/2009WR009038

    Google Scholar 

  • Kim SE (2008) Tree-based threshold modeling for short-term forecast of daily maximum ozone level. Stoch Env Res Risk Assess 24(1):19–28. doi:10.1007/s00477-008-0295-6

    Article  Google Scholar 

  • Kumar U, Jain VK (2010) ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch Env Res Risk Assess 24(5):751–760

    Article  Google Scholar 

  • Kuo YM, Chang FJ (2010) Dynamic factor analysis for estimating ground water arsenic trends. J Environ Qual 39:176–184

    Article  CAS  Google Scholar 

  • Kuo YM, Lin HJ (2010) Dynamic factor analysis of long-term growth trends of the intertidal seagrass Thalassia hemprichii in southern Taiwan. Estuar Coast Shelf Sci 86:225–236

    Article  CAS  Google Scholar 

  • Kuo YM, Chu HJ, Pan TY, Yu HL (2011a) Investigating common trends of annual maximum rainfalls during heavy rainfall events in southern Taiwan. J Hydrol 409:749–758

    Article  Google Scholar 

  • Kuo YM, Wang SW, Jang CS, Yeh N, Yu HL (2011b) Identifying the factors influencing PM2.5 in southern Taiwan using dynamic factor analysis. Atmos Environ 45(39):7276–7285

    Article  CAS  Google Scholar 

  • Kuo YM, Jang CS, Yu HL, Chen SC, Chu HJ (2013) Identifying nearshore groundwater and river hydrochemical variables influencing water quality of Kaoping River Eestuary using dynamic factor analysis. J Hydrol 486:39–47

    Article  CAS  Google Scholar 

  • Levy H (1971) Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173:141–143

    Article  CAS  Google Scholar 

  • Ligas A, Sartor P, Colloca F (2011) Trends in population dynamics and fishery of Parapenaeus longirostris and Nephrops norvegicus in the Tyrrhenian Sea (NW Mediterranean): the relative importance of fishery and environmental variables. Mar Ecol 32:25–35

    Article  Google Scholar 

  • Liu CM, Huang CY, Shieh SL, Wu CC (1994) Important meteorological parameters for ozone episodes experienced in the Taipei Basin. Atmos Environ 28:159–173

    Article  Google Scholar 

  • Martins LC, Latorre-Mdo R, Saldiva PH, Braga AL (2002) Air pollution and emergency room visits due to chronic lower respiratory diseases in the elderly: an ecological time-series study in São Paulo, Brazil. J Occup Environ Med 44:622–627

    Article  CAS  Google Scholar 

  • McElory JL, Smith TB (1986) Vertical pollutant distributions and boundary layer structure observed by air-borne lidar near the complex Southern California coastline. Atmos Environ 20:1555–1566

    Article  Google Scholar 

  • Mudway IS, Kelly FJ (2000) Ozone and the lung: a sensitive issue. Mol Aspects Med 21:1–48

    Article  CAS  Google Scholar 

  • Munñz-Carpena R, Ritter RA, Li YC (2005) Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park. J Contam Hydrol 80(1–2):49–70

    Article  Google Scholar 

  • Na K, Moon KC, Kim YP (2005) Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmos Environ 39:5517–5524

    Article  CAS  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part 1-A discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Ohura T, Amagai T, Fusaya M (2006) Regional assessment of ambient volatile organic compounds in an industry harbor area, Shizuoka, Japan. Atmos Environ 40:238–248

    Article  CAS  Google Scholar 

  • Pinto DM, Blande JD, Souza SR, Nerg AM, Holopainen JK (2010) Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 36:22–34

    Article  CAS  Google Scholar 

  • Pun BK, Seigneur C, White W (2003) Day-of-week behavior of atmospheric ozone in three U.S. Cities. J Air Waste Manag Assoc 53:789–801

    Article  CAS  Google Scholar 

  • Ras MR, Marcé RM, Borrull F (2009) Characterization of ozone precursor volatile organic compounds in urban atmospheres and around the petrochemical industry in the Tarragona region. Sci Total Environ 407:4312–4319

    Article  CAS  Google Scholar 

  • Ritter A, Muñoz-Carpena R (2006) Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park. J Hydrol 317:340–354

    Article  Google Scholar 

  • Ritter A, Muñoz-Carpena R, Bosch DD, Schaffer B, Potter TL (2007) Agricultural land use and hydrology affect variability of shallow groundwater nitrate concentration in South Florida. Hydrol Process 21:2464–2473

    Article  CAS  Google Scholar 

  • Ritter A, Regalado CM, Muñoz-Carpena R (2009) Temporal common trends of topsoil water dynamics in a humid subtropical forest watershed. Vadose Zone Hydrol 8:437–449

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics—from air pollution to climate change, 2nd edn. Wiley, New York

    Google Scholar 

  • Shumway RH, Stoffer DS (1982) An approach to time series smoothing and forecasting using the EM algorithm. J Time Ser Anal 3:253–264

    Article  Google Scholar 

  • Sillman S (1999) The relation between O3, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 33:1821–1845

  • Silva Dias MAF, Machado AJ (1997) The role of local circulations in summertime convective development and nocturnal fog in São Paulo, Brazil. Bound Layer Meteorol 82:135–157

    Article  Google Scholar 

  • Stathopoulou E, Mihalakakou G, Santamouris M, Bagiorgas HS (2008) On the impact of temperature on tropospheric ozone concentration levels in urban environments. J Earth Syst Sci 117(3):227–236

    Article  CAS  Google Scholar 

  • Swartman RK, Ogunlade O (1967) A statistical relationship between solar radiation’, sunshine and relative humidity in the tropics. Atmosphere 5(2):25–34

    Google Scholar 

  • Tamerius JD, Wise EK, Uejio CK, McCoy AL, Comrie AC (2007) Climate and human health: synthesizing environmental complexity and uncertainty. Stoch Env Res Risk Assess 21(5):601–613

    Article  Google Scholar 

  • Taylor GE Jr (2001) Risk assessment of tropospheric ozone: human health, natural resources, and ecology. Human Ecol Risk Assess 7:1183–1193

    Article  CAS  Google Scholar 

  • Vukovich FM, Sherwell J (2003) An examination of the relationship between certain meteorological parameters and surface ozone variations in the Baltimore–Washington corridor. Atmos Environ 37:971–981

    Article  CAS  Google Scholar 

  • Wakamatsu S, Uno I, Ohara T, Schere KL (1999) A study of the relationship between photochemical ozone and its precursor emissions of nitrogen oxides and hydrocarbons in Tokyo and surrounding areas. Atmos Environ 33:3097–3108

    Article  CAS  Google Scholar 

  • Walcek CJ, Yuan HH (1999) Calculated influence of temperature-related factors on ozone formation rates in the lower troposphere. J Appl Meteorol 34:1056–1069

    Article  Google Scholar 

  • You X, Selvan AS, Cherry NM, Kim HM (2008) Determinants of airborne concentrations of volatile organic compounds in rural areas of Western Canada. J Eposure Sci Environ Epidemiol 18:117–128

    Article  CAS  Google Scholar 

  • Zhan W, Zhang Y, Ma W, Yu Q, Chen L (2013) Estimating influences of urbanizations on meteorology and air quality of a Central Business District in Shanghai, China. Stoch Environ Res Risk Assess 27:353–365

    Article  Google Scholar 

  • Zuur AF, Pierce GJ (2004) Common trends in Northeast Atlantic squid time series. J Sea Res 52:57–72

    Article  Google Scholar 

  • Zuur AF, Tuck ID, Bailey N (2003a) Dynamic factor analysis to estimate common trends in fisheries time series. Can J Fish Aquat Sci 60:542–552

    Article  Google Scholar 

  • Zuur AF, Fryer RJ, Jolliffe IT, Dekker R, Beukema JJ (2003b) Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14:665–685

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of Taiwan, for financially supporting this research under Contract No. NSC 101-2313-B-451-003, NSC101-2628-E-002 -017 -MY3 and NSC 102-2221-E-002-140-MY3, and thank the Taiwan Environmental Protection Administration (TWEPA) for providing the monitoring data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Lung Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, YM., Chiu, CH. & Yu, HL. Influences of ambient air pollutants and meteorological conditions on ozone variations in Kaohsiung, Taiwan. Stoch Environ Res Risk Assess 29, 1037–1050 (2015). https://doi.org/10.1007/s00477-014-0968-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-014-0968-2

Keywords

Navigation