Skip to main content
Log in

Risk analysis for the downstream control section in the real-time flood control operation of a reservoir

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Many uncertainty factors are associated with the joint operation of a reservoir and its downstream river, which create risks in flood control decisions. Therefore, this paper proposes an analytical method for the estimation of the uncertainties and their risks in real-time flood control decisions. Three uncertainty factors, including reservoir discharge errors, forecasting errors of lateral inflows and river food routing errors are proposed and modeled as stochastic processes, and their internal transforming formulas are derived based on the theory of routing before combination. The definition and calculation formulas for the risks of each moment and the integrated risk of the entire flood process at the downstream flood control section are proposed by an analytical approach based on the combination theory of stochastic processes. The Dahuofang reservoir in northern China is selected as the study case. The results indicate that the risk of the flood peak is higher than that of other moments under the same controlled flood discharge and that the risk that arises from the uncertainties of the reservoir discharge and lateral inflow is decreased by the river storage function. Compared with the Monte Carlo method, the proposed method is effective and efficient for performing risk analysis of the downstream control section in the real-time flood control operation of a reservoir. The risk analysis results could provide important information regarding flood risks for the operators to implement flood control arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bogner K, Pappenberger F (2011) Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system. Water Resour Res 47:W07524

    Google Scholar 

  • Brekke LD, Maurer EP, Anderson JD, Dettinger MD, Townsley ES, Harrison A, Pruitt T (2009) Assessing reservoir operations risk under climate change. Water Resour Res 45:W04411

    Google Scholar 

  • Chapman SJ (2003) MATLAB programming for engineers. Science Press, Beijing

    Google Scholar 

  • Chebana F, Dabo-Niang S, Ouarda TBMJ (2010) Exploratory functional flood frequency analysis and outlier detection. Water Resour Res 48:W04514

    Google Scholar 

  • Chen J, Zhong PA, Xu B, Zhao YF (2014) Risk analysis for real-time flood control operation of a reservoir. J Water Resour Plan Manag 2014:04014092

    Article  Google Scholar 

  • Chow VT, Maidment DR, Mays LR (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Delenne C, Cappelaere B, Guinot V (2012) Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations. Reliab Eng Syst Saf 107:171–183

    Article  Google Scholar 

  • Diao YF, Wang BD (2010) Risk analysis of flood control operation mode with forecast information based on a combination of risk sources. Sci China Technol Sci 53(7):1949–1956

    Article  Google Scholar 

  • Fayaed S, El-Shafie A, Jaafar O (2013) Reservoir-system simulation and optimization techniques. Stoch Environ Res Risk Assess 27(7):1751–1772

    Article  Google Scholar 

  • Ganji A, Jowkarshorijeh L (2012) Advance first order second moment (AFOSM) method for single reservoir operation reliability analysis: a case study. Stoch Environ Res Risk Assess 26(1):33–42

    Article  Google Scholar 

  • Huang WC, Hsieh CL (2010) Real-time reservoir flood operation during typhoon attacks. Water Resour Res 33(5):772–778

    Google Scholar 

  • Jiang SH (1995) Risk analysis of flood flow in river by using stochastic differential equation. J Nanjing Hydraulic Res Inst 12:127–137 (in Chinese)

    Google Scholar 

  • Jiang SH (1998) Application of stochastic differential equations in risk assessment for flood releases. Hydrol Sci J 43(3):349–360

    Article  Google Scholar 

  • Klein B, Pahlow M, Hundecha Y, Schumann A (2010) Probability analysis of hydrological loads for the design of flood control systems using copulas. J Hydrol Eng 15:360–369

    Article  Google Scholar 

  • Li X, Guo SL, Liu P, Chen G (2010) Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty. J Hydrol 391:124–132

    Article  Google Scholar 

  • Mori Y, Kato T, Murai K (2003) Probabilistic models of combinations of stochastic loads for limit state design. Struct Saf 25(1):69–97

    Article  Google Scholar 

  • Palm WJ (2001) Introduction to MATLAB for engineers. McGraw-Hill, Boston

    Google Scholar 

  • Pearce HT, Wen YK (1984) Stochastic combination of load effects. J Struct Eng 110(7):1613–1629

    Article  Google Scholar 

  • Schaefli B, Talamba DB, Musy A (2006) Quantifying hydrological modeling errors through a mixture of normal distributions. J Hydrol 332:303–315

    Article  Google Scholar 

  • Sun YF, Chang HT, Miao ZJ, Zhong DH (2012) Solution method of overtopping risk model for earth dams. Saf Sci 50(9):1906–1912

    Article  Google Scholar 

  • Turgeon A (2005) Solving a stochastic reservoir management problem with multilag autocorrelated inflows. Water Resour Res 41:W12414

    Google Scholar 

  • Unami K, Abagale FK, Yangyuoru M, Badiul Alam AHM, Kranjac-Berisavljevic G (2010) A stochastic differential equation model for assessing drought and flood risks. Stoch Environ Res Risk Assess 24(5):725–733

    Article  Google Scholar 

  • Vorogushyn S, Merz B, Lindenschmidt KE, Apel H (2010) A new methodology for flood hazard assessment considering dike breaches. Water Resour Res 46:W08541

    Google Scholar 

  • Wang D, Pan SM, Wu JC, Zhu QP, Zhu YS (2004) Flood risk analysis research progress in recent decades. In: The 5th advanced science seminar, Nanjing Universtiy, Nanjing, pp 215–219 (in Chinese)

  • Wen YK (1977) Statistical combination of extreme loads. J Struct Div 103(5):1079–1093

    Google Scholar 

  • Wu SJ, Yang JC, Tung YK (2011) Risk analysis for flood-control structure under consideration of uncertainties in design flood. Nat Hazards 58(1):117–140

    Article  Google Scholar 

  • Yan B, Guo S, Chen L (2014) Estimation of reservoir flood control operation risks with considering inflow forecasting errors. Stoch Environ Res Risk Assess 28(2):359–368

    Article  Google Scholar 

  • Yang AL, Huang GH, Qin XS (2010) An integrated simulation—assessment approach contamination under multiple uncertainties. Water Resour Manage 24(13):3349–3369

    Article  Google Scholar 

  • Zhong PA (2006) Research and application of key technique for real-time joint operation of flood control system in river basin. Dissertation, Hohai University, China (in Chinese)

  • Zhong PA, Zhang WG, Xu B (2013) A risk decision model of the contract generation for hydropower generation companies in electricity markets. Electr Power Syst Res 95:90–98

    Article  Google Scholar 

  • Zou Q, Zhou JZ, Zhou C, Song LX, Guo J, Liu Y (2012) The practical research on flood risk analysis based on IIOSM and fuzzy α-cut technique. Appl Math Model 36(7):3271–3282

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 51179 044), the National Basic Research Program of China (973 Program, Grant No. 2013CB036406), and the National Natural Science Foundation of China (Grant No. 51379055).

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-an Zhong.

Appendices

Appendix 1

Subscript t is omitted in the derivation process to facilitate the description.

$$ f[z/g(x),g(y)] = \int\limits_{ - \infty }^{ + \infty } {\frac{1}{{2\pi \sigma_{{\xi_{1} }} \sigma_{{\xi_{2} }} }}\exp \left\{ - \frac{{[z_{1} - g(x)]^{2} }}{{2\sigma_{{\xi_{1} }}^{2} }} - \frac{{[z - z_{1} - g(y)]^{2} }}{{2\sigma_{{\xi_{2} }}^{2} }}\right\} d(z_{1} )} $$
(26)

If \( \frac{{z_{1} - g(x)}}{{\sigma_{{\xi_{1} }} }} = m \) and \( z - g(x) - g(y) = n \), then Eq. (26) is simplified as:

$$ f[z/g(x),g(y)] = \frac{1}{{2\pi \sigma_{{\xi_{2}}}}}\int_{- \infty}^{+ \infty} {\exp \left[- \frac{{m^{2}}}{2} - \frac{{(n - m\sigma_{{\xi_{1}}})^{2}}}{{2\sigma_{{\xi_{2}}}^{2}}}\right]} dm = \frac{1}{{2\pi \sigma_{{\xi_{2}}}}}\int_{- \infty}^{+ \infty} {\exp \left[- \frac{{m^{2} (\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2}) - 2mn\sigma_{{\xi_{1}}} + n^{2}}}{{2\sigma_{{\xi_{2}}}^{2}}}\right]} dm = \frac{1}{{2\pi \sigma_{{\xi_{2}}}}}\int_{- \infty}^{+ \infty} {\exp \left[- \frac{{\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2}}}{{2\sigma_{{\xi_{2}}}^{2}}}(m^{2} - \frac{{n\sigma_{{\xi_{1}}}}}{{\sigma_{{\xi_{2}}}^{2}}} \cdot m \cdot \frac{{2\sigma_{{\xi_{2}}}^{2}}}{{\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2}}}) - \frac{{n^{2}}}{{2\sigma_{{\xi_{2}}}^{2}}}\right]} dm = \frac{1}{{2\pi \sigma_{{\xi_{2}}}}}\int_{- \infty}^{+ \infty} {\exp \left\{- \frac{{\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2}}}{{2\sigma_{{\xi_{2}}}^{2}}}[m^{2} - \frac{{2n\sigma_{{\xi_{1}}}}}{{\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2}}} \cdot m + \frac{{n^{2} \sigma_{{\xi_{1}}}^{2}}}{{(\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2})^{2}}} - \frac{{n^{2} \sigma_{{\xi_{1}}}^{2}}}{{(\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2})^{2}}}] - \frac{{n^{2}}}{{2\sigma_{{\xi_{2}}}^{2}}}\right\}} dm = \frac{1}{{2\pi \sigma_{{\xi_{2}}}}}\int_{- \infty}^{+ \infty} {\exp \left[- \frac{{\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2}}}{{2\sigma_{{\xi_{2}}}^{2}}}(m - \frac{{n\sigma_{{\xi_{1}}}}}{{\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2}}})^{2} + \frac{{n^{2} \sigma_{{\xi_{1}}}^{2}}}{{2\sigma_{{\xi_{2}}}^{2} (\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2})}} - \frac{{n^{2}}}{{2\sigma_{{\xi_{2}}}^{2}}}\right]} dm = \frac{1}{{2\pi \sigma_{{\xi_{2}}}}}\int_{- \infty}^{+ \infty} {\exp \left[- (\sqrt {\frac{{\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2}}}{2}} \frac{m}{{\sigma_{{\xi_{2}}}}} - \frac{{n\sigma_{{\xi_{1}}}}}{{\sqrt {\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2}}}} \cdot \frac{1}{{\sqrt 2 \sigma_{{\xi_{2}}}}})^{2} - \frac{{n^{2}}}{{2(\sigma_{{\xi_{1}}}^{2} + \sigma_{{\xi_{2}}}^{2})}}\right]} dm $$
(27)

If \( \sqrt {\frac{{\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} }}{2}} \frac{m}{{\sigma_{{\xi_{2} }} }} - \frac{{n\sigma_{{\xi_{1} }} }}{{\sqrt {\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} } }} \cdot \frac{1}{{\sqrt 2 \sigma_{{\xi_{2} }} }} = h \), then Eq. (27) is simplified as:

$$ f[z/g(x),g(y)] = \frac{1}{{2\pi \sigma_{{\xi_{2} }} }} \cdot \frac{{\sqrt 2 \sigma_{{\xi_{2} }} }}{{\sqrt {\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} } }} \cdot \exp \left[ - \frac{{n^{2} }}{{2(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )}}\right]\int_{ - \infty }^{ + \infty } {e^{{ - h^{2} }} } dh = \frac{1}{{\sqrt 2 \pi \cdot \sqrt {\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} } }}\exp \left[ - \frac{{n^{2} }}{{2(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )}}\right] \cdot \sqrt \pi = \frac{1}{{\sqrt {2\pi } \cdot \sqrt {\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} } }}\exp \left\{ - \frac{{\{ z - [g(x) + g(y)]\}^{2} }}{{2(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )}}\right\} $$
(28)

Therefore, \( f[z/g(x),g(y)] = \frac{1}{{\sqrt {2\pi } \cdot \sqrt {\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} } }}\exp \{ - \frac{{\{ z - [g(x) + g(y)]\}^{2} }}{{2(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )}}\} \)

Appendix 2

Subscript t is omitted in the derivation process to facilitate the description.

$$P_{t,R} = \int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{{Q_{R} }} {f[z,g(x),g(y)]d(z)} } } d[g(x)]d[g(y)] = \int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{{Q_{R} }} {\frac{1}{{2\pi \sigma_{gx} \sigma_{gy} \sqrt {2\pi (\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )} }}\exp \left\{ - \frac{{[z - g(x) - g(y)]^{2} }}{{2(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )}} - \frac{{[g(x) - u_{gx} ]^{2} }}{{2\sigma_{gx}^{2} }} - \frac{{[g(y) - u_{gy} ]^{2} }}{{2\sigma_{gy}^{2} }}\right\} d(z)} } } d[g(x)]d[g(y)] = \int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {\frac{1}{{2\pi \sigma_{gx} \sigma_{gy} }}} } \exp \left\{ - \frac{{[g(x) - u_{gx} ]^{2} }}{{2\sigma_{gx}^{2} }} - \frac{{[g(y) - u_{gy} ]^{2} }}{{2\sigma_{gy}^{2} }}\right\} \int\limits_{ - \infty }^{{Q_{R} }} {\frac{1}{{\sqrt {2\pi (\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )} }}} \exp \left\{ - \frac{{[z - g(x) - g(y)]^{2} }}{{2(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )}}\right\} d(z)d[g(x)]d[g(y)] $$
(29)

If \( z = \sqrt {(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )} h + g(x) + g(y), \) then Eq. (29) is simplified as:

$$ P_{t,R} = \int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {\frac{1}{{2\pi \sigma_{gx} \sigma_{gy} }}} } \exp \{ - \frac{{[g(x) - u_{gx} ]^{2} }}{{2\sigma_{gx}^{2} }} - \frac{{[g(y) - u_{gy} ]^{2} }}{{2\sigma_{gy}^{2} }}\} \int\limits_{ - \infty }^{{\frac{{Q_{R} - g(x) - g(y)}}{{\sqrt {(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )} }}}} {\frac{1}{{\sqrt {2\pi } }}} \exp ( - \frac{{h^{2} }}{2})d(h)d[g(x)]d[g(y)] $$
(30)

If \( \frac{{g(x) - u_{gx} }}{{\sigma_{gx} }} = m \) and\( \frac{{g(y) - u_{gy} }}{{\sigma_{gy} }} = n, \) then Eq. (30) is simplified as:

$$ P_{t,R} = \int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {\frac{1}{2\pi }} } \exp \left\{ - \frac{{m^{2} }}{2} - \frac{{n^{2} }}{2}\right\} \int\limits_{ - \infty }^{{\frac{{Q_{R} - m\sigma_{gx} - u_{gx} - n\sigma_{gy} - u_{gy} }}{{\sqrt {(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )} }}}} {\frac{1}{{\sqrt {2\pi } }}} \exp \left( - \frac{{h^{2} }}{2}\right)dhdmdn = \int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {\frac{1}{2\pi }} } \exp\left \{ - \frac{{m^{2} }}{2} - \frac{{n^{2} }}{2}\right\} \{ \frac{1}{2} + \int\limits_{0}^{{\frac{{Q_{R} - m\sigma_{gx} - u_{gx} - n\sigma_{gy} - u_{gy} }}{{\sqrt {(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )} }}}} {\frac{1}{{\sqrt {2\pi } }}} \exp \left( - \frac{{h^{2} }}{2}\right)dh\} dmdn = 0.5 + \frac{1}{{(\sqrt {2\pi } )^{3} }}\int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {\int\limits_{0}^{{\frac{{Q_{R} - m\sigma_{gx} - u_{gx} - n\sigma_{gy} - u_{gy} }}{{\sqrt {(\sigma_{{\xi_{1} }}^{2} + \sigma_{{\xi_{2} }}^{2} )} }}}} {\exp ( - \frac{{h^{2} + m^{2} + n^{2} }}{2})} } } dhdmdn $$
(31)

If \( Q^{\prime}_{R} = \frac{{Q_{R} - m(t)\sigma_{gx} (t) - u_{gx} (t) - n(t)\sigma_{gy} (t) - u_{gy} (t)}}{{\sqrt {\sigma_{{\xi_{1} }}^{2} (t) + \sigma_{{\xi_{2} }}^{2} (t)} }}, \) then Eq. (31) is simplified as:

$$ P_{t,R} = 0.5 + \frac{1}{{(\sqrt {2\pi } )^{3} }}\int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {\int\limits_{0}^{{Q^{\prime}_{R} }} {\exp ( - \frac{{h^{2} + m^{2} + n^{2} }}{2})} } } dhdmdn $$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhong, Pa., Zhao, Yf. et al. Risk analysis for the downstream control section in the real-time flood control operation of a reservoir. Stoch Environ Res Risk Assess 29, 1303–1315 (2015). https://doi.org/10.1007/s00477-015-1032-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1032-6

Keywords

Navigation