Skip to main content

Advertisement

Log in

Bivariate frequency analysis of flood and extreme precipitation under changing environment: case study in catchments of the Loess Plateau, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Floods have changed in a complex manner, triggered by the changing environment (i.e., intensified human activities and global warming). Hence, for better flood control and mitigation in the future, bivariate frequency analysis of flood and extreme precipitation events is of great necessity to be performed within the context of changing environment. Given this, in this paper, the Pettitt test and wavelet coherence transform analysis are used in combination to identify the period with transformed flood-generating mechanism. Subsequently, the primary and secondary return periods of annual maximum flood (AMF) discharge and extreme precipitation (Pr) during the identified period are derived based on the copula. Meanwhile, the conditional probability of occurring different flood discharge magnitudes under various extreme precipitation scenarios are estimated using the joint dependence structure between AMF and Pr. Moreover, Monte Carlo-based algorithm is performed to evaluate the uncertainties of the above copula-based analyses robustly. Two catchments located on the Loess plateau are selected as study regions, which are Weihe River Basin (WRB) and Jinghe River Basin (JRB). Results indicate that: (1) the 1994–2014 and 1981–2014 are identified as periods with transformed flood-generating mechanism in the WRB and JRB, respectively; (2) the primary and secondary return periods for AMF and Pr are examined. Furthermore, chance of occurring different AMF under varying Pr scenarios also be elucidated according to the joint distribution of AMF and Pr. Despite these, one thing to notice is that the associate uncertainties are considerable, thus greatly challenges measures of future flood mitigation. Results of this study offer technical reference for copula-based frequency analysis under changing environment at regional and global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aloui C, Hkiri B (2014) Co-movements of GCC emerging stock markets: new evidence from wavelet coherence analysis. Econ Model 36:421–431

    Article  Google Scholar 

  • Berghuijs WR, Woods RA, Hutton CJ, Sivapalan M (2016) Dominant flood-generating mechanisms across the United States. Geophys Res Lett 43:4382–4390. https://doi.org/10.1002/2016GL068070

    Article  Google Scholar 

  • Blöschl G, Gaál L, Hall J, Kiss A, Komma J, Nester T, Parajka J, Perdigão RAP, Plavcová L, Rogger M, Salinas JL, Viglione A (2015) Increasing river floods: fiction or reality? WIREs Water 2:329–344. https://doi.org/10.1002/wat2.1079

    Article  Google Scholar 

  • Bradshaw CJA, Sodhi NS, Peh KS-H, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Change Biol 13:2379–2395. https://doi.org/10.1111/j.1365-2486.2007.01446.x

    Article  Google Scholar 

  • Brath A, Montanari A, Moretti G (2006) Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). J Hydrol 324(1):141–153

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res 33(2):261–304

    Article  Google Scholar 

  • Chang R, Fu B, Liu G, Liu S (2011) Soil carbon sequestration potential for “Grain for Green” project in Loess Plateau, China. Environ Manage 48(6):1158–1172

    Article  Google Scholar 

  • Chang JX, Wang YM, Istanbulluoglu E, Bai T, Huang Q, Yang DW, Huang SZ (2015) Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quat Int 380:169–179

    Article  Google Scholar 

  • Chen L, Wei W, Fu B, Lü Y (2007) Soil and water conservation on the Loess Plateau in China: review and perspective. Prog Phys Geog 31(4):389–403

    Article  CAS  Google Scholar 

  • Chen L, Singh VP, Guo S (2012) Measure of correlation between river flows using the copula-entropy method. J Hydrol Eng 18(12):1591–1606

    Article  Google Scholar 

  • Cherubini U, Luciano E, Vecchiato W (2004) Copula Methods in Finance. In: The Wiley Finance Series, Wiley. https://books.google.com.br/books

  • Du T, Xiong L, Xu CY, Gippel CJ, Guo S, Liu P (2015) Return period and risk analysis of nonstationary low-flow series under climate change. J Hydrol 527:234–250

    Article  Google Scholar 

  • Duan K, Mei Y, Zhang L (2016) Copula-based bivariate flood frequency analysis in a changing climate—a case study in the Huai River Basin China. J Earth Sci 27(1):37–46

    Article  Google Scholar 

  • Dung NV, Merz B, Bardossy A, Apel H (2015) Handling uncertainty in bivariate quantile estimation–An application to flood hazard analysis in the Mekong Delta. J Hydrol 527:704–717

    Article  Google Scholar 

  • Fan YR, Huang WW, Huang GH, Li YP, Huang K, Li Z (2016a) Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas. Adv Water Resour 88:170–185

    Article  Google Scholar 

  • Fan YR, Huang WW, Huang GH, Huang K, Li YP, Kong XM (2016b) Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area China. Theor Appl Climatol 125(1–2):381–397. https://doi.org/10.1007/s00704-015-1505-z

    Article  CAS  Google Scholar 

  • Fu GT, Butler D (2014) Copula-based frequency analysis of overflow and flooding in urban drainage systems. J Hydrol 510:49–58

    Article  Google Scholar 

  • Genest C, Favre AC, Béliveau J, Jacques C (2007) Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour Res 43(9):223–236

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44(2):199–213

    Article  Google Scholar 

  • Gringorten II (1963) A plotting rule of extreme probability paper. J Geophys Res 68(3):813–814

    Article  Google Scholar 

  • Guo A, Chang J, Huang Q, Wang Y, Liu D, Li Y, Tian T (2017) Hybrid method for assessing the multi-scale periodic characteristics of the precipitation–runoff relationship: a case study in the Weihe River basin China. J Water Clim Change 8(1):62–77

    Article  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Change 3(9):816–821

    Article  Google Scholar 

  • Hooke JM (2015) Variations in flood magnitude–effect relations and the implications for flood risk assessment and river management. Geomorphology 251:91–107

    Article  Google Scholar 

  • Huang J, Zhang W, Zuo J, Bi J, Shi J, Wang X, Chang Z, Huang Z, Yang S et al (2008) An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv Atmos Sci 25(6):906–921

    Article  Google Scholar 

  • Huang CC, Pang J, Zha X, Zhou Y, Su H, Wan H, Ge B (2011) Sedimentary records of extraordinary floods at the ending of the mid-Holocene climatic optimum along the Upper Weihe River China. The Holocene 22(6):675–686

    Article  Google Scholar 

  • Huang S, Hou B, Chang J, Huang Q, Chen Y (2014) Copulas-based probabilistic characterization of the combination of dry and wet conditions in the Guanzhong Plain China. J Hydrol 519:3204–3213

    Article  Google Scholar 

  • Huang S, Huang Q, Chang J, Chen Y, Xing L, Xie Y (2015) Copulas-based drought evolution characteristics and risk evaluation in a typical arid and semi-arid region. Water Resour Manage 29:1489–1503

    Article  Google Scholar 

  • Huang SZ, Huang Q, Chen YT, Xing L, Leng GY (2016) Spatial–temporal variation of precipitation concentration and structure in the Wei River Basin China. Theor Appl Climatol 125:67–77

    Article  Google Scholar 

  • Jain S, Lall U (2001) Floods in a changing climate: does the past represent the future? Water Resour Res 37(12):3193–3205

    Article  Google Scholar 

  • Karmakar S, Simonovic SP (2009) Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. J Flood Risk Manage 2(1):32–44

    Article  Google Scholar 

  • Keener VW, Feyereisen GW, Lall U, Jones JW, Bosch DD, Lowrance R (2010) El-Niño/Southern Oscillation (ENSO) influences on monthly NO3 load and concentration stream flow and precipitation in the Little River Watershed Tifton Georgia (GA). J Hydrol 381:352–363

    Article  CAS  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kiem AS, Verdon-Kidd DC (2013) The importance of understanding drivers of hydroclimatic variability for robust flood risk planning in the coastal zone. Aust J Water Res 17(2):126–134. https://doi.org/10.7158/W13-015.2013.17.2

    Article  Google Scholar 

  • Kristoufek L (2015) What are the main drivers of the Bitcoin price? Evidence from wavelet coherence analysis. PLoS ONE 10(4):e0123923

    Article  CAS  Google Scholar 

  • Kron W (2009) Flood insurance: from clients to global financial markets. J Flood Risk Manage 2(1):68–75

    Article  Google Scholar 

  • Li X, Wei X (2014) Analysis of the relationship between soil erosion risk and surplus floodwater during flood season. J Hydrol Eng 19(7):1294–1311

    Article  Google Scholar 

  • Li Z, Zheng FL, Liu WZ, Flanagan DC (2010) Spatial distribution and temporal trends of extreme temperature and precipitation events on the Loess Plateau of China during 1961–2007. Quatern Int 226(1):92–100

    Article  Google Scholar 

  • Li S, Liang W, Fu B, Lü Y, Fu S, Wang S, Su H (2016) Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci Total Environ 569:1032–1039

    Article  CAS  Google Scholar 

  • Liang W, Bai D, Wang F, Fu B, Yan J, Wang S, Yang Y, Long D, Feng M (2015) Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour Res 51(8):6500–6519

    Article  Google Scholar 

  • Liu S, Huang S, Huang Q, Xie Y, Leng G, Luan J, Song X, Wei X, Li X (2017) Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: a case study in the Wei River Basin China. J Hydrol 548:184–195

    Article  Google Scholar 

  • Ma M, Song S, Ren L, Jiang S, Song J (2013) Multivariate drought characteristics using trivariate Gaussian and Student copula. Hydrol Process 27:1175–1190

    Article  Google Scholar 

  • Machado MJ, Botero BA, López J, Francés F, Díez-Herrero A, Benito G (2015) Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol Earth Syst Sci Discuss 12:525–568

    Article  Google Scholar 

  • Madsen H, Lawrence D, Lang M, Martinkova M, Kjeldsen TR (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519:3634–3650

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Massey JF (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  • Meraj G, Romshoo SA, Yousuf AR, Altaf S, Altaf F (2015) Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat Hazards 77(1):153–175

    Article  Google Scholar 

  • Merz B, Aerts J, Arnbjerg-Nielsen K, Baldi M, Becker A, Bichet A, Blöschl G, Bouwer LM, Brauer A, Cioffi F, Delgado JM, Gocht M, Guzzetti F, Harrigan S, Hirschboeck K, Kilsby C, Kron W, Kwon H-H, Lall U, Merz R, Nissen K, Salvatti P, Swierczynski T, Ulbrich U, Viglione A, Ward PJ, Weiler M, Wilhelm B, Nied M (2014) Floods and climate: emerging perspectives for flood risk assessment and management. Nat Hazard Earth Syst 2(2):1559–1612

    Article  Google Scholar 

  • Merz B, Nguyen VD, Vorogushyn S (2016) Temporal clustering of floods in Germany: do flood-rich and flood-poor periods exist? J Hydrol 541B:824–838

    Article  Google Scholar 

  • Michailidi EM, Bacchi B (2017) Dealing with uncertainty in the probability of overtopping of a flood mitigation dam. Hydrol Earth Syst Sci 21(5):1–23

    Article  Google Scholar 

  • Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415:514–517

    Article  CAS  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M (2008) Climate change: stationarity is dead: whither water management? Science 319(5863):573–574

    Article  CAS  Google Scholar 

  • Nadal-Romero E, Cammeraat E, Serrano-Muela MP, Lana-Renault N, Regüés D (2016) Hydrological response of an afforested catchment in a Mediterranean humid mountain area: a comparative study with a natural forest. Hydrol Process 30(15):2717–2733

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, Berlin

    Google Scholar 

  • Ng EK, Chan JC (2012) Geophysical applications of partial wavelet coherence and multiple wavelet coherence. J Atmos Ocean Tech 29(12):1845–1853

    Article  Google Scholar 

  • Nie C, Li H, Yang L, Wu S, Liu Y, Liao Y (2012) Spatial and temporal changes in flooding and the affecting factors in China. Nat Hazards 61(2):425–439

    Article  Google Scholar 

  • OECD (2012) OECD environmental outlook to 2050: the consequences of inaction OECD Publishing Paris. http://dx.doi.org/10.1787/9789264122246-en

  • Olang LO, Fürst J (2011) Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River Basin Kenya. Hydrol Process 25(1):80–89

    Article  Google Scholar 

  • Ozga-Zielinski B, Ciupak M, Adamowski J, Khalil B, Malard J (2016) Snow-melt flood frequency analysis by means of copula based 2D probability distributions for the Narew River in Poland. J Hydrol Reg Stud 6:26–51

    Article  Google Scholar 

  • Peng H, Jia YW, Tague C, Slaughter P (2015) An eco-hydrological model-based assessment of the impacts of soil and water conservation management in the Jinghe River Basin China. Water 7:6301–6320

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. J R Stat Soc 28(2):126–135

    Google Scholar 

  • Pielke R, Prins G, Rayner S, Sarewitz D (2007) Climate change 2007: lifting the taboo on adaptation. Nature 445(7128):597–598

    Article  CAS  Google Scholar 

  • Qi W, Zhang C, Fu G, Zhou H, Liu J (2016) Quantifying uncertainties in extreme flood predictions under climate change for a medium-sized basin in northeast. China J Hydrometeorol 17:3009–3112. https://doi.org/10.1175/JHM-D-15-0212.1

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2012) Bivariate flood frequency analysis of Upper Godavari River flows using Archimedean copulas. Water Resour Manage 26(14):3995–4018

    Article  Google Scholar 

  • Requena AI, Mediero L, Garrote L (2013) Bivariate return period based on copulas for hydrologic dam design: comparison of theoretical and empirical approach. Hydrol Earth Syst Sci Discuss 10(1):557–596

    Article  Google Scholar 

  • Saad C, Adlouni SE, St-Hilaire A, Gachon P (2014) A nested multivariate copula approach to hydrometeorological simulations of spring floods: the case of the Richelieu River (Québec Canada) record flood. Stoch Environ Res Risk Assess 29(1):275–294

    Article  Google Scholar 

  • Salvadori G, Michele CD (2004) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40(12):229–244. https://doi.org/10.1029/2004WR003133

    Article  Google Scholar 

  • Salvadori G, Michele CD, Kottegoda N, Rosso R (2007) Extremes in nature: an approach using copulas. Springer, New York

    Google Scholar 

  • Salvadori G, Michele CD, Durante F (2011) Multivariate design via copulas. Hydrol Earth Syst Sci Discuss 8:5523–5558. https://doi.org/10.5194/hessd-8-5523-2011

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Serinaldi F (2013) An uncertain journey around the tails of multivariate hydrological distributions. Water Resour Res 49(10):6527–6547

    Article  Google Scholar 

  • Serinaldi F (2016) Can we tell more than we can know? The limits of bivariate drought analyses in the United States. Stoch Environ Res Risk A 30:1691–1704. https://doi.org/10.1007/s00477-015-1124-3

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Water Resour 77:17–36

    Article  Google Scholar 

  • Shi H, Shao M (2000) Soil and water loss from the Loess Plateau in China. J Arid Environ 45(1):9–20

    Article  Google Scholar 

  • Shi PJ, Yuan Y, Zheng J, Wang JA, Ge Y, Qiu GY (2007) The effect of land use/cover change on surface runoff in Shenzhen region China. CATENA 69(1):31–35

    Article  Google Scholar 

  • Sklar A (1959) Functions de repartition à n dimensions et luers marges. Publications de l’Institut de Statistique de l’Universitè de Paris 8:229–231

    Google Scholar 

  • Svetlana D, Radovan D, Ján D (2015) The economic impact of floods and their importance in different regions of the world with emphasis on Europe. Procedia Econ Finance 34:649–655

    Article  Google Scholar 

  • Swierczynski T, Ionita M, Pino D (2017) Using archives of past floods to estimate future flood hazards. EOS trans 98:1–4. https://doi.org/10.1029/2017EO066221

    Article  Google Scholar 

  • Teegavarapu RSV (2012) Floods in changing climate. Cambridge University Press, New York (Extreme precipitation)

    Google Scholar 

  • Timmerman ME, Kiers HAL, Smilde AK (2007) Estimating confidence intervals for principal component loadings: a comparison between the bootstrap and asymptotic results. Br J Math Stat Psychol 60:295–314

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • UNISDR (2015) The human cost of weather-related disasters 1995–2015. http://www.unisdr.org/archive/46793

  • UNISDR(AP) (2012) Unplanned urbanization increasing flood impacts. https://www.unisdr.org/archive/27965

  • Vandenberghe S, Verhoest NEC, Buyse E, De Baets B (2010) A stochastic design rainfall generator based on copulas and mass curves. Hydrol Earth Syst Sci Discuss 7(3):3613–3648. https://doi.org/10.5194/hessd-7-3613-2010

    Article  Google Scholar 

  • Vandenberghe S, Verhoest NEC, Onof C, De Baets B (2011) A comparative copula-based bivariate frequency analysis of observed and simulated storm events: a case study on Bartlett-Lewis modeled rainfall. Water Resour Res 47(7):197–203. https://doi.org/10.1029/2009WR008388

    Article  Google Scholar 

  • Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45(8):2263–2289

    Article  Google Scholar 

  • Wan L, Zhang XP, Ma Q, Zhang JJ, Ma TY, Sun YP (2014) Spatiotemporal characteristics of precipitation and extreme events on the Loess Plateau of China between 1957 and 2009. Hydrol Process 28(18):4971–4983

    Article  Google Scholar 

  • Wang C, Chang NB, Yeh GT (2009) Copula-based flood frequency (COFF) analysis at the confluences of river systems. Hydrol Process 23(10):1471–1486

    Article  Google Scholar 

  • Wang XJ, Gebremichael M, Yan J (2010) Weighted likelihood copula modeling of extreme rainfall events in Connecticut. J Hydrol 390:108–115

    Article  Google Scholar 

  • Wang H, Sun F, Xia J, Liu W (2017) Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess Plateau in China. Hydrol Earth Syst Sci 21(4):1–30

    Article  Google Scholar 

  • Wu J, Miao C, Zhang X, Yang T, Duan Q (2017) Detecting the quantitative hydrological response to changes in climate and human activities. Sci Total Environ 586:328–337

    Article  CAS  Google Scholar 

  • Xu K, Yang DW, Xu XY, Lei HM (2015) Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. J Hydrol 527:630–640

    Article  Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

  • Zhang L, Singh VP (2012) Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy 14:1784–1812. https://doi.org/10.3390/e14091784

    Article  Google Scholar 

  • Zhang X, Harvey K, Hogg WD, Yuzyk TR (2001) Trends in Canadian streamflow. Water Resour Res 37(4):987–998

    Article  Google Scholar 

  • Zhang X, Yu X, Wu S, Zhang M, Li J (2007) Response of land use/coverage change to hydrological dynamics at watershed scale in the Loess Plateau of China. Acta Ecol Sin 27(2):414–421

    Article  CAS  Google Scholar 

  • Zhang X, Zhang L, Zhao J, Rustomji P, Hairsine P (2008) Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour Res 44(7):2183–2188

    Article  Google Scholar 

  • Zhang Q, Gu XH, Singh VP, Xiao MZ, Xu CY (2014) Stationarity of annual flood peaks during 1951–2010 in the Pearl River basin, China. J Hydrol 519:3263–3274

    Article  Google Scholar 

  • Zhang Q, Xiao MZ, Sing VP (2015) Uncertainty evaluation of copula analysis of hydrological droughts in the East River basin, China. Global Planet Change 129:1–9

    Article  Google Scholar 

  • Zhao G, Mu X, Wen Z, Wang F, Gao P (2013) Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad Dev 24(5):499–510

    Google Scholar 

  • Zhao L, Lyu AF, Wu JJ, Michael H, Tang ZH, He B, Liu JH, Liu M (2014) Impact of meteorological drought on streamflow drought in Jinghe River Basin of China. Chin Geogr Sci 24(6):694–705

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFC0400906), National Natural Science Foundation of China (51679187), Innovation Fund for doctoral dissertation of Xi’an University of Technology (310-252071606, 310-252071605), and China Scholarship Council (CSC). Sincere gratitude is extended to the editor and the anonymous reviewers for their professional comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxia Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 763 kb)

Appendix 1

Appendix 1

Procedures of the maximum likelihood method are given as follows.

The joint distribution of (x, y) is defined as

$$H\left( {x,y;\xi } \right) = C\left( {F\left( {x;\alpha_{x} } \right),F\left( {y;\alpha_{y} } \right);\varTheta } \right)$$
(19)

where \(\xi = \left( {\alpha_{x} ,\alpha_{y} ,\varTheta } \right)\).

Hence, the \(h\left( {x,y;\xi } \right)\) can be written as (Cherubini et al. 2004, p. 154):

$$h\left( {x,y;\xi } \right) = c\left( {F\left( {x;\alpha_{x} } \right),F\left( {y;\alpha_{y} } \right);\varTheta } \right)f\left( {x;\alpha_{x} } \right)f\left( {y;\alpha_{y} } \right)$$
(20)

where \(c\left( {F\left( {x;\alpha_{x} } \right),F\left( {y;\alpha_{y} } \right);\varTheta } \right) = \frac{{\partial \left( {F\left( {x;\alpha_{x} } \right),F\left( {y;\alpha_{y} } \right);\varTheta } \right)}}{{\partial F\left( {x;\alpha_{x} } \right)\partial F\left( {y;\alpha_{y} } \right)}}\) denotes the density function of copula.

Let \(\left( {x_{1} ,y_{1} } \right), \ldots ,\left( {x_{T} ,y_{T} } \right)\) be the random sample of size T from copula C. The log-likelihood function is expressed as

$$l\left( \xi \right) = \sum\limits_{t = 1}^{T} {\log \left( {h\left( {x,y;\xi } \right)} \right)} = \sum\limits_{t = 1}^{T} {\log \left( {c\left( {F\left( {x;\alpha_{x} } \right),F\left( {y;\alpha_{y} } \right);\varTheta } \right)f\left( {x;\alpha_{x} } \right)f\left( {y;\alpha_{y} } \right)} \right)}$$
(21)

Then, maximizing the log-likelihood function \(l\left( \xi \right)\) to generate \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\xi }_{MLE} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{x\left( {MLE} \right)}} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\alpha }_{{y\left( {MLE} \right)}} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\varTheta }_{{\left( {MLE} \right)}} } \right).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, A., Chang, J., Wang, Y. et al. Bivariate frequency analysis of flood and extreme precipitation under changing environment: case study in catchments of the Loess Plateau, China. Stoch Environ Res Risk Assess 32, 2057–2074 (2018). https://doi.org/10.1007/s00477-017-1478-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1478-9

Keywords

Navigation