Skip to main content
Log in

Modeling input errors to improve uncertainty estimates for one-dimensional sediment transport models

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Bayesian methods have recently been applied to one-dimensional sediment transport models to assess the uncertainty in model predictions due to uncertainty in the parameter values. However, these approaches neglect any uncertainties in the model inputs, which might play a substantial role. The objective of this research is to include uncertainties in sediment transport model inputs and evaluate their contributions to the overall uncertainty in the model predictions. To accomplish this goal, simple error models are developed for the input data and integrated into an existing Bayesian method. Five types of input data are considered: input discharges, rating curves, vertical and horizontal distances in cross-sections, and benchmark elevations that define the longitudinal profile of the reach. The input errors are modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters that are estimated within the Bayesian framework. The Bayesian approach is coupled to the Sedimentation and River Hydraulics-One Dimension (SRH-1D) model and used to simulate a 23-km reach of the Tachia River in Taiwan. When input uncertainties are included, the prediction ranges change substantially and cover more of the available observations, which suggests the uncertainty is better represented when input errors are considered. The results also indicate that the errors in the benchmark elevations have the largest impact on the uncertainty of the predictions among those considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajami NK, Duan Q, Sorooshian S (2007) An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour Res 43:W01403. https://doi.org/10.1029/2005WR004745

    Article  Google Scholar 

  • Bertin X, Fortunato AB, Oliveira A (2007) Sensitivity analysis of a morphodynamic modeling system applied to a Portuguese tidal inlet. In: Proceedings of 5th IAHR symposium on river, coastal, and estuarine morphodynamics, pp 11–17

  • Box GEP, Tiao GC (1973) Bayesian inference in statistical analyses. Addison-Wesley-Longman, Reading

    Google Scholar 

  • Bunte K, Abt SR (2005) Effect of sampling time on measured gravel bed load transport rates in a coarse-bedded stream. Water Resour Res 41:W11405. https://doi.org/10.1029/2004WR003880

    Article  Google Scholar 

  • Camenen B, Larroudé P (2003) Comparison of sediment transport formulae for the coastal environment. Coast Eng 48(2):111–132

    Article  Google Scholar 

  • Chang CH, Yang JC, Tung YK (1993) Sensitivity and uncertainty analysis of a sediment transport model: a global approach. Stoch Hydrol Hydraul 7(4):299–314

    Article  Google Scholar 

  • Cho E, Arhonditsis GB, Khim J, Chung S, Heo T (2016) Modeling metal-sediment interaction processes: parameter sensitivity assessment and uncertainty analysis. Environ Model Softw 80:159–174

    Article  Google Scholar 

  • Chow VT (1959) Open channel hydraulics. McGraw-Hill, New York

    Google Scholar 

  • Christensen R, Johnson W, Branscum A, Hanson TE (2011) Bayesian ideas and data analysis: an introduction for scientists and statisticians. CRC Press, Boca Raton

    Google Scholar 

  • Clément P, Piégay H (2003) Statistics and fluvial geomorphology. In: Kondolf GM, Piégay H (eds) tools in fluvial geomorphology. Wiley, Chichester, pp 597–630

    Google Scholar 

  • Corazza MZ, Abrao T, Lepri FG, Gimenez SM, Oliveira E, Santos MJ (2012) Monte Carlo method applied to modeling copper transport in river sediments. Stoch Environ Res Risk Assess 26(8):1063–1079

    Article  Google Scholar 

  • Cui Y, Parker G (1998) The arrested gravel front: stable gravel-sand transitions in rivers Part 2: general numerical solution. J Hydraul Res 36(2):159–182

    Article  Google Scholar 

  • Davies AG, van Rijn LC, Damgaard JS, van de Graaff J, Ribberink JS (2002) Intercomparison of research and practical sand transport models. Coast Eng 46(1):1–23

    Article  Google Scholar 

  • De Risi R, Goda K, Mori N, Yasuda T (2017) Bayesian tsunami fragility modeling considering input data uncertainty. Stoch Environ Res Risk Assess 31(5):1253–1269

    Article  Google Scholar 

  • Frings RM, Schüttrumpf H, Vollmer S (2011) Verification of porosity predictors for fluvial sand-gravel deposits. Water Resour Res 47:W07525. https://doi.org/10.1029/2010WR009690

    Article  Google Scholar 

  • Gaeuman D, Andrews ED, Krause A, Smith W (2009) Predicting fractional bed load transport rates: application of the Wilcock–Crowe equations to a regulated gravel bed river. Water Resour Res 45:W06409. https://doi.org/10.1029/2008WR007320

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Green PJ (2001) A primer on Markov chain Monte Carlo. In: Barndorff-Nielsen OE, Cox DR, Klüppelberg C (eds) Complex stochastic systems. Chapman & Hall/CRC, Boca Raton, pp 1–62

    Google Scholar 

  • Greimann BP, Lai Y, Huang JV (2008) Two-dimensional total sediment load model equations. J Hydraul Eng 134(8):1142–1146

    Article  Google Scholar 

  • Huang JV, Greimann BP (2013) User’s manual for SRH-1D 3.0. Bureau of Reclamation, U.S. Department of the Interior, Denver

  • Huard D, Mailhot A (2006) A Bayesian perspective on input uncertainty in model calibration: application to hydrological model “abc”. Water Resour Res 42:W07416. https://doi.org/10.1029/2005WR004661

    Article  Google Scholar 

  • Kanso A, Chebbo G, Tassin B (2005) Bayesian analysis for erosion modelling of sediments in combined sewer systems. Water Sci Technol 52(5):135–142

    Article  CAS  Google Scholar 

  • Kavetski D, Franks SW, Kuczera G (2002) Confronting input uncertainty in environmental modelling. In: Duan Q, Gupta HV, Sorooshian S, Rousseau AN, Turcotte R (eds) Calibration of watershed models. American Geophysical Union, Washington. https://doi.org/10.1029/WS006p0049

    Chapter  Google Scholar 

  • Lai Y, Greimann BP (2010) SRH model applications and progress report on bank erosion and turbidity current models. Bureau of Reclamation, Department of the Interior, Denver

    Google Scholar 

  • Laloy E, Vrugt JA (2012) High-dimensional posterior exploration of hydrologic models using multiple-try DREAM (ZS) and high-performance computing. Water Resour Res 48:W01526. https://doi.org/10.1029/2011WR010608

    Article  Google Scholar 

  • Li L, Xu CY (2014) The comparison of sensitivity analysis of hydrological uncertainty estimates by GLUE and Bayesian method under the impact of precipitation errors. Stoch Environ Res Risk Assess 28(3):491–504

    Article  Google Scholar 

  • Limeneros JT (1970) Determination of the manning coefficient from measured bed roughness in natural channels. Geological Survey, U.S. Department of the Interior, Washington, DC

    Google Scholar 

  • López R, Barragán J (2008) Equivalent roughness of gravel-bed rivers. J Hydraul Eng 134(6):847–851

    Article  Google Scholar 

  • McLean DG (1985) Sensitivity analysis of bedload equations. Proc Can Soc Civ Eng Ann Conf 1985:1–15

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  • Mueller ER, Pitlick J, Nelson JM (2005) Variation in the reference shields stress for bed load transport in gravel bed streams and rivers. Water Resour Res 41:W04006. https://doi.org/10.1029/2004WR003692

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I-A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Nelson WB (1982) Applied life data analysis. Wiley, New York

    Book  Google Scholar 

  • Owen-Joyce SJ, Raymond LH (1996) An accounting system for water and consumptive use along the Colorado River, Hoover Dam to Mexico (No. 2407). Geological Survey, U.S. Department of the Interior, Denver

    Google Scholar 

  • Pinto L, Fortunato AB, Freire P (2006) Sensitivity analysis of non-cohesive sediment transport formulae. Cont Shelf Res 26(15):1826–1839

    Article  Google Scholar 

  • Ruark MD, Niemann JD, Greimann BP, Arabi M (2011) Method for assessing impacts of parameter uncertainty in sediment transport modeling applications. J Hydraul Eng. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000343

    Article  Google Scholar 

  • Sabatine SM, Niemann JD, Greimann BP (2015) Evaluation of parameter and model uncertainty in simple applications of a 1D sediment transport model. J Hydraul Eng. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000992

    Article  Google Scholar 

  • Saltelli A, Andres TH, Homma T (1995) Sensitivity analysis of model output. Performance of the iterated fractional factorial design method. Comput Stat Data Anal 20:387–407

    Article  Google Scholar 

  • Sauer VB, Meyer RW (1992) Determination of error in individual discharge measurements. Geological Survey, U.S. Department of the Interior, Denver

    Book  Google Scholar 

  • Schmelter ML, Stevens DK (2013) Traditional and Bayesian statistical models in fluvial sediment transport. J Hydraul Eng. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000672

    Article  Google Scholar 

  • Schmelter ML, Hooten MB, Stevens DK (2011) Bayesian sediment transport model for unisize bed load. Water Resour Res 47:W11514. https://doi.org/10.1029/2011WR010754

    Article  Google Scholar 

  • Schmelter ML, Erwin SO, Wilcock PR (2012) Accounting for uncertainty in cumulative sediment transport using Bayesian statistics. Geomorphology 175:1–13

    Article  Google Scholar 

  • Schmelter ML, Wilcock PR, Hooten MB, Stevens DK (2015) Multi-fraction Bayesian sediment transport model. J Mar Sci Eng 3(3):1066–1092

    Article  Google Scholar 

  • van Griensven A, Meixner T (2007) A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models. J Hydroinfor 9(4):277–291

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201. https://doi.org/10.1029/2002WR001642

    Article  Google Scholar 

  • Vrugt JA, Ter Braak CJ, Clark MP, Hyman JM, Robinson BA (2008) Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour Res. https://doi.org/10.1029/2007WR006720

    Article  Google Scholar 

  • Wilcock PR (2001) Toward a practical method for estimating sediment-transport rates in gravel-bed rivers. Earth Surf Process Landf 26(13):1395–1408

    Article  Google Scholar 

  • WRA (2008) Proposed engineering schemes for river stability control and energy dissipation for downstream of the Chichi Weir (in Chinese). 4th River Division, Water Resources Agency, Taiwan

  • Wu FC, Chen CC (2009) Bayesian updating of parameters for a sediment entrainment model via Markov chain Monte Carlo. J Hydraul Eng 135(1):22–37

    Article  Google Scholar 

  • Wu W, Wang SS, Jia Y (2000) Nonuniform sediment transport in alluvial rivers. J Hydraul Res 38(6):427–434

    Article  Google Scholar 

  • Ye M, Neuman SP, Meyer PD (2004) Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour Res 40:W05113. https://doi.org/10.1029/2003WR002557

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the U.S. Bureau of Reclamation Science and Technology Program under Project 1596 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Niemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J.Y., Niemann, J.D. & Greimann, B.P. Modeling input errors to improve uncertainty estimates for one-dimensional sediment transport models. Stoch Environ Res Risk Assess 32, 1817–1832 (2018). https://doi.org/10.1007/s00477-017-1495-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1495-8

Keywords

Navigation