Skip to main content

Advertisement

Log in

Joint inversion of physical and geochemical parameters in groundwater models by sequential ensemble-based optimal design

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Joint inversion of physical and geochemical parameters in groundwater reactive transport models is still a great challenge due to the intrinsic heterogeneities of natural porous media and the scarcity of observation data. In this study, we make use of a sequential ensemble-based optimal design (SEOD) method to jointly estimate physical and geochemical parameters of groundwater models. The effectiveness and efficiency of the SEOD method are illustrated by the comparison between the sequential optimization strategy and the conventional strategy (using fixed sampling locations) for two synthetic cases. Since the SEOD method is an optimization method based on the ensemble Kalman filter (EnKF), it invokes the time-consuming genetic algorithm at every assimilation step of the EnKF to obtain the optimal sampling locations. To enhance its computational efficiency, we improve the SEOD method by replacing the EnKF with the ensemble smoother with multiple data assimilation. Furthermore, the influence factors of the original and improved SEOD method are also discussed. Our results show that the SEOD method provides an effective designed sampling strategy to accurately estimate heterogeneous distribution of physical and geochemical parameters. Moreover, the improved SEOD method is more advantageous than the original one in computational efficiency, making this SEOD framework more promising for future application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aanonsen SI, Nævdal G, Oliver DS, Reynolds AC, Vallès B (2009) The ensemble Kalman filter in reservoir engineering—a review. SPE J 14:393–412

    Article  Google Scholar 

  • Atchley AL, Navarre-Sitchler AK, Maxwell RM (2014) The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates. J Contam Hydrol 165:53–64. https://doi.org/10.1016/j.jconhyd.2014.07.008

    Article  CAS  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous materials. Dover, New York

    Google Scholar 

  • Burgers G, Leeuwen P, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Month Weather Rev 126:1719–1724

    Article  Google Scholar 

  • Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions: 3. Application to synthetic and field data. Water Resour Res 22:228–242

    Article  Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222

    Article  Google Scholar 

  • Chen Y, Oliver DS (2010) Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput Geosci 14:579–601

    Article  Google Scholar 

  • Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29:1107–1122. https://doi.org/10.1016/j.advwatres.2005.09.007

    Article  Google Scholar 

  • Cleveland TG, Yeh WWG (1990) Sampling network design for transport parameter identification. J Water Resour Plan Manag 116:764–783

    Article  Google Scholar 

  • Dagan G (1984) Solute transport in heterogeneous porous formations. J Fluid Mech 145:151. https://doi.org/10.1017/s0022112084002858

    Article  Google Scholar 

  • Dagan G (1985) Stochasti modeling of groundwater flow by unconditional and conditional probabilities: the inverse problem. Water Resour Res 21(1):65–72

    Article  Google Scholar 

  • Doherty J (2004) PEST: model-independent parameter estimation, user’s manual, 5th edn. Watermark Numerical Computing, Oxley

    Google Scholar 

  • Emerick AA, Reynolds AC (2011) Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications. Comput Geosci 15:251–269

    Article  Google Scholar 

  • Emerick AA, Reynolds AC (2013) Ensemble smoother with multiple data assimilation. Comput Geosci Uk 55:3–15. https://doi.org/10.1016/j.cageo.2012.03.011

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367

    Article  Google Scholar 

  • Evensen G (2009) Data assimilation: the ensemble Kalman filter. Springer, Berlin

    Book  Google Scholar 

  • Fennell DE, Carroll AB, Gossett JM, Zinder SH (2001) Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol 35:1830–1839

    Article  CAS  Google Scholar 

  • Gómez-Hernández JJ, Hendricks Franssen HJ, Sahuquillo A (2003) Stochastic conditional inverse modeling of subsurface mass transport: a brief review and the self-calibrating method. Stoch Environ Res Risk Assess 17(5):319–328

    Article  Google Scholar 

  • Gu Y, Oliver DS (2007) An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE J 12:1990–1995

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The US geological survey modular ground-water model—User guide to modularization concepts and the ground-water flow process. US Geological Survey Open-File Report 00–92, 121 p

  • Hendricks Franssen HJ, Kinzelbach W (2008) Real-time groundwater flow modeling with the ensemble Kalman filter: joint estimation of states and parameters and the filter inbreeding problem. Water Resour Res 44:354–358

    Google Scholar 

  • Hendricks Franssen HJ, Alcolea A, Riva M, Bakr M, van der Wiel N, Stauffer F, Guadagnini A (2009) A comparison of seven methods for the inverse modelling of groundwater flow. Application to the characterisation of well catchments. Adv Water Resour 32(6):851–872

    Article  Google Scholar 

  • Huang C, Hu BX, Li X, Ye M (2009) Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source. Stoch Env Res Risk Assess 23(8):1155

    Article  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(D):35–45

    Article  Google Scholar 

  • Knopman DS, Voss CI (1987) Behavior of sensitivities in the one-dimensional advection-dispersion equation: implications for parameter estimation and sampling design. Water Resour Res 23:253–272

    Article  CAS  Google Scholar 

  • Kullback S (1997) Information theory and statistics. Courier Corporation, North Chelmsford

    Google Scholar 

  • Li G, Reynolds AC (2009) Iterative ensemble Kalman filters for data assimilation. SPE J 14:496–505

    Article  Google Scholar 

  • Li L, Steefel CI, Kowalsky MB, Englert A, Hubbard SS (2010) Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado. J Contam Hydrol 112:45–63. https://doi.org/10.1016/j.jconhyd.2009.10.006

    Article  CAS  Google Scholar 

  • Man J, Zhang J, Li W, Zeng L, Wu L (2016) Sequential ensemble-based optimal design for parameter estimation. Water Resour Res 52:7577–7592. https://doi.org/10.1002/2016wr018736

    Article  Google Scholar 

  • Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147

    Article  Google Scholar 

  • Neuman SP (1973) Calibration of distributed parameter groundwater flow models viewed as a multiple objective decision process under uncertainty. Water Resour Res 9(4):1006–1021

    Article  Google Scholar 

  • Nowak W, De Barros FPJ, Rubin Y (2010) Bayesian geostatistical design: task-driven optimal site investigation when the geostatistical model is uncertain. Water Resour Res 46(3):374–381. https://doi.org/10.1029/2009WR008312

    Article  Google Scholar 

  • Oliver DS, Chen Y (2011) Recent progress on reservoir history matching: a review. Comput Geosci 15(1):185–221

    Article  Google Scholar 

  • Oliver DS, Cunha LB, Reynolds AC (1997) Markov chain Monte Carlo methods for conditioning a permeability field to pressure data. Math Geol 29(1):61–91

    Article  Google Scholar 

  • Prommer CH, Post V (2010) A reactive multicomponent transport model for saturated porous media. Groundwater 48(5):627–632

    Article  CAS  Google Scholar 

  • Rubin Y (1991) Transport in heterogeneous porous media: prediction and uncertainty. Water Resour Res 27:1723–1738

    Article  Google Scholar 

  • Sandrin SK, Brusseau ML, Piatt JJ, Bodour AA, Blanford WJ, Nelson NT (2004) Spatial variability of in situ microbial activity: biotracer tests. Groundwater 42:374–383

    Article  CAS  Google Scholar 

  • Scheibe TD, Fang Y, Murray CJ, Roden EE, Chen J, Chien YJ, Brooks SC, Hubbard SS (2006) Transport and biogeochemical reaction of metals in a physically and chemically heterogeneous aquifer. Geosphere 2(4):220–235. https://doi.org/10.1130/Ges00029.1

    Article  Google Scholar 

  • Sorensen JVT, Madsen H, Madsen H (2004) Data assimilation in hydrodynamic modelling: on the treatment of non-linearity and bias. Stoch Environ Res Risk Assess 18(7):228–244

    Google Scholar 

  • Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22:2069–2082. https://doi.org/10.1029/WR022i013p02069

    Article  CAS  Google Scholar 

  • Sun NZ, Yeh WWG (2007) Development of objective-oriented groundwater models: 2. Robust experimental design. Water Resour Res. https://doi.org/10.1029/2006wr004888

    Article  Google Scholar 

  • Tong J, Hu BX, Yang J (2010) Using data assimilation method to calibrate a heterogeneous conductivity field conditioning on transient flow test data. Stoch Environ Res Risk Assess 24(8):1211–1223

    Article  Google Scholar 

  • Ushijima TT, Yeh WWG (2015) Experimental design for estimating unknown hydraulic conductivity in an aquifer using a genetic algorithm and reduced order model. Adv Water Resour 86:193–208

    Article  Google Scholar 

  • Van Leeuwen PJ, Evensen G (1996) Data assimilation and inverse methods in terms of a probabilistic formulation. Mon Weather Rev 124:2898–2913

    Article  Google Scholar 

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  • Zhang D, Lu Z (2004) An efficient, high-order perturbation approach for flow in random porous media via Karhunen–Loève and polynomial expansions. J Comput Phys 194:773–794

    Article  Google Scholar 

  • Zhang J, Zeng L, Chen C, Chen D, Wu L (2015) Efficient Bayesian experimental design for contaminant source identification. Water Resour Res 51(1):576–598

    Article  Google Scholar 

  • Zheng C (2006) MT3DMS v5.2 supplemental user’s guide: technical report to the US Army Engineer Research and Development Center, Department of Geological Sciences, University of Alabama, p 24

  • Zhou HY, Gómez-Hernández JJ, Li LP (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their insightful comments and suggestions that have helped improve the paper. This work was financially supported by the National Nature Science Foundation of China grants (Nos. U1503282, 41672229 and 41172206). We would like to thank Mr. Jun Man from Zhejiang University for providing the SEOD code.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqing Shi or Jichun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Shi, X., Jiang, B. et al. Joint inversion of physical and geochemical parameters in groundwater models by sequential ensemble-based optimal design. Stoch Environ Res Risk Assess 32, 1919–1937 (2018). https://doi.org/10.1007/s00477-018-1521-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1521-5

Keywords

Navigation