Skip to main content

Advertisement

Log in

Long-term temporal changes in central European tree phenology (1946−2010) confirm the recent extension of growing seasons

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

One of the ways to assess the impacts of climate change on plants is analysing their long-term phenological data. We studied phenological records of 18 common tree species and their 8 phenological phases, spanning 65 years (1946−2010) and covering the area of the Czech Republic. For each species and phenophase, we assessed the changes in its annual means (for detecting shifts in the timing of the event) and standard deviations (for detecting changes in duration of the phenophases). The prevailing pattern across tree species was that since around the year 1976, there has been a consistent advancement of the onset of spring phenophases (leaf unfolding and flowering) and subsequent acceleration of fruit ripening, and a delay of autumn phenophases (leaf colouring and leaf falling). The most considerable shifts in the timing of spring phenophases were displayed by early-successional short-lived tree species. The most pronounced temporal shifts were found for the beginning of seed ripening in conifers with an advancement in this phenophase of up to 2.2 days year−1 in Scots Pine (Pinus sylvestris). With regards to the change in duration of the phenophases, no consistent patterns were revealed. The growing season has extended on average by 23.8 days during the last 35 years. The most considerable prolongation was found in Pedunculate Oak (Quercus robur): 31.6 days (1976−2010). Extended growing season lengths do have the potential to increase growth and seed productivity, but unequal shifts among species might alter competitive relationships within ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamík P, Král M (2008) Climate and resource-driven long-term changes in dormice populations negatively affect hole-nesting songbirds. J Zool 275:209–215

    Article  Google Scholar 

  • Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002) Changes in European spring phenology. Int J Climatol 22:1727–1738

    Article  Google Scholar 

  • Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2008) Climatic fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29:223–242

    Article  Google Scholar 

  • Brázdil R, Bělínová M, Rožnovský J (2011) Phenological observations made by the I. R. Bohemian Patriotic-Economic Society, 1828−1847. Theor Appl Climatol 105:71–81

    Article  Google Scholar 

  • Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agr Forest Meteorol 108:101–112

    Article  Google Scholar 

  • Chmielewski F-M, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Res 19:257–264

    Article  Google Scholar 

  • Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207

    Article  CAS  Google Scholar 

  • Easterling DR (2002) Recent changes in frost days and the frost-free season in the United States. Bull Am Meteorol Soc 83:1327–1332

    Google Scholar 

  • Estrella N, Menzel A (2006) Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Res 32:253–267

    Article  Google Scholar 

  • Estrella N, Sparks TH, Menzel A (2009) Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Climate Res 39:235–248

    Article  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  Google Scholar 

  • Garzía-Mozo H, Mestre A, Galán C (2010) Phenological trends in southern Spain: a response to climate change. Agr Forest Meteorol 150:575–580

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Glob Change Biol 15:1930–1948

    Article  Google Scholar 

  • Harrington R, Woiwood I, Sparks T (1999) Climate change and trophic interactions. Tree 14:146–150

    Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  Google Scholar 

  • Hlavinka P, Trnka M, Semerádová D, Dubrovský M, Žalud Z, Možný M (2009) Effect of drought on yield variability of key crops in Czech Republic. Agr Forest Meteorol 149:431–442

    Article  Google Scholar 

  • Kalvāne G, Romanovskaja D, Briede A, Bakšienė E (2009) Influence of climate change on phenological phases in Latvia and Lithuania. Climate Res 39:209–219

    Article  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  Google Scholar 

  • Kunkel KE, Easterling DR, Hubbard K, Redmond K (2004) Temporal variations in frost-free season in the United States: 1895 − 2000. Geophys Res Lett 31:1–4

    Article  Google Scholar 

  • Larcher W (2006) Altitudial variation in flowering time of lilac (Syringa vulgaris L.) in the Alps in relation to temperature. Sitzungberichte und Anzeiger der mathematisch- naturwissenschaftlichen Klasse 212:3–18

    Google Scholar 

  • Linkosalo T, Häkkinen R, Terhivuo J, Tuomenvirta H, Hari P (2009) The time series of flowering and leaf bud burst of boreal trees (1846−2005) support the direct temperature observations of climatic warming. Agr Forest Meteorol 149:453–461

    Article  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659–659

    Article  CAS  Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • Mozny M, Tolasz R, Nekovar J, Sparks T, Trnka M, Zalud Z (2009) The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agr Forest Meteorol 149:913–919

    Article  Google Scholar 

  • Myking T, Heide OM (1995) Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704

    Article  Google Scholar 

  • Nekovář J, Hájková L (2010) Fenologická pozorování v Česku−Historie a současnost. Meteorologické zprávy 63:13–20

    Google Scholar 

  • Nekovář J, Dalezios N, Koch E, Kubin E, Nejedlik P, Niedzwiedz T, Sparks T, Wielgolaski F-E (2008) The history and current status of plant phenology in Europe. COST Action 725, Brussels

  • Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18:811–816

    Article  Google Scholar 

  • Partanen J, Leinonen I, Repo T (2001) Effect of accumulated duration of the light period on bud burst in Norway spruce (Picea abies) of varying ages. Silva Fenn 35:111–117

    Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

  • Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214

    Article  Google Scholar 

  • Reyssat E, Mahadevan L (2009) Hygromorphs: from pine cones to biometric bilayers. J R Soc Interface 6:951–957

    Article  CAS  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  • Rötzer T, Chmielewski F-M (2001) Phenological maps of Europe. Climate Res 18:249–257

    Article  Google Scholar 

  • Schaber J, Badeck F-W (2005) Plant phenology in Germany over the 20th century. Reg Environ Change 5:37–46

    Article  Google Scholar 

  • Schleip C, Sparks TH, Estrella N, Menzel A (2009) Spatial variation in onset dates and trends in phenology across Europe. Climate Res 39:249–260

    Article  Google Scholar 

  • Schwartz MD (2003) Phenology: an integrative environmental science. Kluwer, Dordrecht

    Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Change Biol 12:343–351

    Article  Google Scholar 

  • Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725

    Article  Google Scholar 

  • Sparks TH, Jaroszewicz B, Krawczyk M, Tryjanowski P (2009) Advancing phenology in Europe’s last lowland primeval forest: non-linear temperature response. Climate Res 39:221–226

    Article  Google Scholar 

  • Stříž M, Nekovář J (2010) Prostorová a časová analýza prvních květů a listů smrku obecného (1961−1990, 1991−2009). Meteorologické zprávy 63:101–107

    Google Scholar 

  • Tooke F, Battey NH (2010) Temperate flowering phenology. J Exp Bot 61:2853–2862

    Article  CAS  Google Scholar 

  • Trnka M, Brázdil R, Dubrovský M, Semerádová D, Štěpánek P, Dobrovolný M, Možný M, Eitzinger J, Málek J, Formayer H, Balek J, Žalud Z (2011a) A 200-year climate record in Central Europe: implications for agriculture. Agron Sustain Dev 31:631–641

    Article  Google Scholar 

  • Trnka M, Eitzinger J, Semerádová D, Hlavinka P, Balek J, Dubrovský M, Kubu G, Štěpánek P, Thaler S, Možný M, Žalud Z (2011b) Expected changes in agroclimatic conditions in Central Europe. Clim Chang 108:261–289

    Article  Google Scholar 

  • Trnka M, Olesen JE, Kersebaum KC, Skjelvåg AO, Eitzinger J, Seguin B, Peltonen-Sainio P, Rötter R, Iglesias A, Orlandini S, Dubrovský M, Hlavinka P, Balek J, Eckersten H, Cloppet E, Calanca P, Gobin A, Vučetić V, Nejedlik P, Kumar S, Lalic B, Mestre A, Rossi F, Kozyra J, Alexandrov V, Semerádová D, Žalud Z (2011c) Agroclimatic conditions in Europe under climatic change. Glob Change Biol 17:2298–2318

    Article  Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. P Roy Soc Lond B Bio 272:2561–2569

    Article  Google Scholar 

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. P Roy Soc Lond B Bio 268:289–294

    Article  CAS  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Schneider A (2004) The footprint of urban climates on vegetation phenology. Geophys Res Lett 31:1–4

    Google Scholar 

  • Ziello C, Estrella N, Kostova M, Koch E, Menzel A (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971−2000). Climate Res 39:227–234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kolářová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1701 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolářová, E., Nekovář, J. & Adamík, P. Long-term temporal changes in central European tree phenology (1946−2010) confirm the recent extension of growing seasons. Int J Biometeorol 58, 1739–1748 (2014). https://doi.org/10.1007/s00484-013-0779-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0779-z

Keywords

Navigation