Skip to main content

Advertisement

Log in

Democracy-inspired particle swarm optimizer with the concept of peer groups

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This article proposes to integrate the concept of governance in human society with the nature-inspired particle swarm optimization (PSO) algorithm. A population-based iterative global optimization algorithm, called Democracy-inspired particle swarm optimization with the concept of peer groups (DPG-PSO) has been developed for solving multidimensional, non-linear, non-convex, and multimodal optimization problems by exploiting the concept of the new peer-influenced topology. Here the particles, each of which model a candidate solution of the problem under consideration, are given a choice to follow two possible leaders who have been selected on the basis of a voting mechanism. The leader and the opposition have their influences proportional to the total number of votes polled in their favor. A detailed empirical study comprising tuning of DPG-PSO parameters and its optimizing mechanism has been presented in the paper. The algorithm is tested in a standard benchmark suite consisting of unimodal, multimodal, shifted and rotated functions. DPG-PSO is found to statistically outperform seven other well-known PSO variants in terms of final accuracy and robustness over majority of the test cases, thus, proving itself as an efficient algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews PS (2006) An investigation into mutation operators for particle swarm optimization. In: Proc. IEEE Congr. Evol. Comput., pp 1044–1051

  • Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proc. IEEE Congr. Evol. Comput., pp 84–89

  • Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484

    Article  MathSciNet  MATH  Google Scholar 

  • Blackwell TM, Bentley PJ (2002) Don’t push me! Collision-avoiding swarms. Proc. IEEE Congr. Evol. Comput, Honolulu, HI, pp 1691–1696

  • Bratto D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: IEEE swarm intelligence symposium

  • Chen WN et al. (2013) Particle Swarm Optimization with an Aging Leader and Challengers. In: IEEE Transactions on evolutionary computation 17(2):241–258

  • Chen WN et al. (2012) Particle swarm optimization with an aging leader and challengers. IEEE Trans. on Evolutionary Computation (In Press)

  • Chen YP, Peng WC, Jian MC (2007) Particle swarm optimization with recombination and dynamic linkage discovery. IEEE Trans Syst Man Cybern B 37(6):1460–1470

    Article  Google Scholar 

  • Cho H, Kim D, Olivera F, Guikema S (2011) An enhanced Speciation in particle swarm optimization for multi-modal problems. Eur J Oper Res 213:15–23

  • Clerc M (2008) Particle Swarm Optimization, ISTE Publications

  • Clerc M, Kennedy J (2002) The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1):58–73

    Article  Google Scholar 

  • Das S, Konar A, Chakraborty UK (2005) Improving particle swarm optimization with differentially perturbed velocity. Proc. Genet. Evol. Comput. Conf. (GECCO), pp 177–184

  • Das S, Abraham A, Chakraboty UK, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3):526–553

    Article  Google Scholar 

  • Dehuri S, Ghosh A, Mall R (2006) Particles with age for data clustering. 9-th Intl. Conf. on Inf. Tech. (ICIT), pp 221–224

  • Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proc. 6th Int. Symp. Micromach. Human Sci, pp 39–43

  • Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic systems with particle swarms. Proc. IEEE Congr. Evol. Comput, Seoul, Korea, pp 94–97

  • Eberhart RC, Shi Y (2004) Guest editorial. IEEE Trans. Evol. Comput.—Special Issue Particle Swarm Optimization 8(3):201–203

  • Engelbrecht AP (2006) Fundamentals of Computational Swarm Intelligence. Wiley, USA

  • Fan S-KS, Zahara E (2007) A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur J Oper Res 181:527–548

  • Fishkin J (2005) Experimenting with a democratic ideal: deliberative polling and public opinion. In: ActaPolitica. pp 284–298

  • Higashi N, Iba H (2003) Particle swarm optimization with Gaussian mutation. In: Proc. IEEE Swarm Intell. Symp., pp 72–79

  • Hu X, Eberhart RC (2002) Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Proc. Congr. Evol. Comput, Honolulu, HI

  • Janson S, Middendorf M (2005) A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans Syst Man Cybern Part B Cybernetics. 35(6)

  • Kaveh A (2014) Advances in meta-heuristic algorithm for optimal design of structures. Springer, Switzerland

    Book  MATH  Google Scholar 

  • Kaveh A, Zolghadr A (2013) Democratic PSO with truss layout and size optimization with frequency constraints. Comput Struct 130:10–21

    Article  Google Scholar 

  • Kennedy J (1997) The particle swarm social adaptation of knowledge. In: Proc. IEEE Int. Conf. Evol. Comput, Indianapolis, IN, pp 303–308

  • Kennedy J (1999) Small worlds and mega-minds: effects of neighbourhood topology on Particle Swarm performance. In: Proc. Congr. Evol. Comput., pp 1931–1938

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Netw., vol. 4., pp 1942–1948

  • Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proc. IEEE Congr. Evol. Comput., vol 2. pp 1671–1676

  • Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst Man Cybern C Appl Rev 36(4):515–519

    Article  Google Scholar 

  • Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  • Liang JJ, Suganthan PN (2005) Dynamic multiswarm particle swarm optimizer. In: Proc. Swarm Intell. Symp., pp 124–129

  • Liao CC, Zhao XL, Xu JZ (2012) Blade layers optimization of wind turbines using FAST and improved PSO Algorithm. Renew Energy 42:227–233

    Article  Google Scholar 

  • Lim WH, Isa NAM (2014) An adaptive two-layer particle swarm optimization with elitist learning strategy. Inf Sci 273:49–72

    Article  MathSciNet  Google Scholar 

  • Lovbjerg M, Krink T (2002) Extending Particle Swarm optimizers with self-organized criticality. In: Proc. Congr. Evol. Comput, Honolulu, HI, pp 1588–1593

  • Lovbjerg M, Rasmussen TK, Krink T (2001) Hybrid particle swarm optimizer with breeding and subpopulations. In: Proc. Genet. Evol. Comput. Conf., pp 469–476

  • Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. In: IEEE Trans. Evol. Comput. 8:204–210

  • Miranda V, Fonseca N (2002) New evolutionary Particle Swarm algorithm (EPSO) applied to voltage/VAR control. In: Proc. 14\(^{th}\) Power Syst. Comput. Conf., Seville, Spain

  • Monson CK, Seppi KD (2005) Exposing origin-seeking bias in PSO”, Genetic and Evolutionary Computation Conference (GECCO ’05), pp 241–248

  • Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36

    Article  MathSciNet  Google Scholar 

  • Omran MGH, Engelbrecht AP, Salman A (2006) Using the ring neighborhood topology with self-adaptive differential evolution. Adv Nat Comput 4221:976–979

    Google Scholar 

  • Parsopoulos KE, Vrahatis MN (2004) On the computation of all global minimizers through particle swarm optimization. IEEE Trans Evol Comput 8(3):211–224

  • Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl 10. doi:10.1155/2008/685175

  • Qu B-Y, Suganthan PN, Das S (2012) A distance-based locally informed particle swarm model for multi-modal optimization. IEEE Trans Evol Comput. doi:10.1109/TEVC.2012.2203138

  • Quande Q, Li L, Rongjun L (2010) A novel PSO with piecewise-varied inertia weight. In: 2010 2nd IEEE International Conference on Information and Financial Engineering (ICIFE), pp 503–506

  • Ratnaweera A, Halgamuge S, Waston H (2004) Self-organizing hierarchical particle optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  • Shayeghi H, Mahdavi M, Bagheri A (2010) Discrete PSO algorithm based optimization of transmission lines loading in TNEP problem. Energy Conv Manag 51(1):112–121

    Article  Google Scholar 

  • Shelokar PS, Siarry P, Jayaraman VK, Kulkarni BD (2007) Particle swarm and ant colony algorithms hybridized for improving continuous optimization. Appl Math Comput 188(1):129–142

    Article  MathSciNet  MATH  Google Scholar 

  • Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proc. IEEE Congr. Evol. Comput. pp 69–73

  • Shi Y, Eberhart RC (1999 Empirical study of particle swarm optimization. In: Proc. IEEE Congr. Evol. Comput., pp 1945–1950

  • Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm optimization. In: Proc. IEEE Congr. Evol. Comput., vol 1, pp 101–106

  • Spears WM, Green DT, Spears DF (2010) Biases in particle swarm optimization. Int J Swarm Intell Res 1(2):34–57

  • Suganthan PN (1999) Particle swarm optimizer with neighborhood operator. In: Proc. Congr. Evol. Comput, Washington, DC, pp 1958–1962

  • Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Nanyang Technological University

  • Tillett J, Mao TM, Sahin F, Rao R (2005) Darwinian particle swarm optimization. In: Proc. Indian Int. Conf. Artif. Intell., pp 1474–1487

  • Valle YD, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2):171–195

    Article  Google Scholar 

  • Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

  • Venter G, Sobieski JS (2003) “Particle swarm optimization”. AIAA J 41(8):1583–1589

    Article  Google Scholar 

  • Wang L, Yang B, Chen Y (2014) Improving particle swarm optimization using multi-layer searching strategy. In: Information Sciences, vol 274, pp 70–94

  • Xin B, Chen J, Zhang J, Fang H, Peng ZH (2012) Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy. IEEE Trans SMC Part C 42(5):744–767

  • Zhan ZH, Zhang J, Li Y, Shi Y (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):832–847

    Article  Google Scholar 

  • Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: Proc. IEEE Int. Conf. Syst. Man Cybern., pp 3816–3821

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagatam Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burman, R., Chakrabarti, S. & Das, S. Democracy-inspired particle swarm optimizer with the concept of peer groups. Soft Comput 21, 3267–3286 (2017). https://doi.org/10.1007/s00500-015-2007-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-2007-8

Keywords

Navigation