Skip to main content
Erschienen in: Soft Computing 11/2018

06.03.2018 | Focus

Adaptive multiple graph regularized semi-supervised extreme learning machine

verfasst von: Yugen Yi, Shaojie Qiao, Wei Zhou, Caixia Zheng, Qinghua Liu, Jianzhong Wang

Erschienen in: Soft Computing | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Semi-supervised extreme learning machine (SSELM) was proposed as an effective algorithm for machine learning and pattern recognition. However, the performance of SSELM heavily depends on whether the underlying geometrical structure of the data can be well exploited. Though many techniques have been utilized for constructing graph to represent the data structure, which of them can best reflect the intrinsic distribution of complicated input data is still needed to be verified. Aiming to solve this problem, we propose a novel algorithm called adaptive multiple graph regularized semi-supervised extreme learning machine (AMGR-SSELM). The contributions of the proposed algorithm are as follows: (1) AMGR-SSELM employs multiple graph structures extracted from training samples to characterize the structure of input data. Since these graphs are constructed based on different principles and complementary with each other, the underlying data distribution can be well exploited through combining them. (2) A nonnegative weight vector is introduced into AMGR-SSELM to adaptively combine the multiple graphs for representing different data. (3) An explicit classifier can be learnt in our algorithm, which overcomes the ‘out of sample’ problem. (4) A simple and efficient iterative update approach is also proposed to optimize AMGR-SSELM. In addition, we compare the proposed approach with other classification methods and some extreme learning machine variants on five benchmark image databases (Yale, Extended YaleB, CMU PIE, AR and FKP). The results of extensive experiments show the advantages and effectiveness of the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat An S, Liu W, Venkatesh S (2007) Face recognition using kernel ridge regression. In: Proceeding of IEEE international conference on computer vision An S, Liu W, Venkatesh S (2007) Face recognition using kernel ridge regression. In: Proceeding of IEEE international conference on computer vision
Zurück zum Zitat Bengio Y, Paiement J, Vincent P (2003) Out-of-sample extensions for LLE, isomap, MDS, eigenmaps and spectral clustering. In: Proceedings of advances in neural information processing systems, pp 177–184 Bengio Y, Paiement J, Vincent P (2003) Out-of-sample extensions for LLE, isomap, MDS, eigenmaps and spectral clustering. In: Proceedings of advances in neural information processing systems, pp 177–184
Zurück zum Zitat Boyd S, Vandenberghe L (2009) Convex optimization. Cambridge University Press, New YorkMATH Boyd S, Vandenberghe L (2009) Convex optimization. Cambridge University Press, New YorkMATH
Zurück zum Zitat Cai X, Nie X et al (2013) Heterogeneous image features integration via multi-modal semi-supervised learning model. In: 2013 IEEE international conference on computer vision (ICCV). IEEE, pp 1737–1744 Cai X, Nie X et al (2013) Heterogeneous image features integration via multi-modal semi-supervised learning model. In: 2013 IEEE international conference on computer vision (ICCV). IEEE, pp 1737–1744
Zurück zum Zitat Cambria E et al (2013) Extreme learning machines trends & controversies. IEEE Intell Syst 28(6):30–59CrossRef Cambria E et al (2013) Extreme learning machines trends & controversies. IEEE Intell Syst 28(6):30–59CrossRef
Zurück zum Zitat Cao J et al (2016) Extreme learning machine and adaptive sparse representation for image classification. Neural Netw 81:91–102CrossRef Cao J et al (2016) Extreme learning machine and adaptive sparse representation for image classification. Neural Netw 81:91–102CrossRef
Zurück zum Zitat Deng W et al (2016) A fast SVD-hidden-nodes based extreme learning machine for large-scale data analytics. Neural Netw 77:14–28CrossRef Deng W et al (2016) A fast SVD-hidden-nodes based extreme learning machine for large-scale data analytics. Neural Netw 77:14–28CrossRef
Zurück zum Zitat Ding S, Zhang N et al (2017) Unsupervised extreme learning machine with representational features. Int J Mach Learn Cybern 8(2):587–595CrossRef Ding S, Zhang N et al (2017) Unsupervised extreme learning machine with representational features. Int J Mach Learn Cybern 8(2):587–595CrossRef
Zurück zum Zitat Duda R, Hart P, Stork D (2012) Pattern classification. Wiley, New YorkMATH Duda R, Hart P, Stork D (2012) Pattern classification. Wiley, New YorkMATH
Zurück zum Zitat Gastaldo P et al (2016) SIM-ELM: connecting the elm model with similarity-function learning. Neural Netw 74:22–34CrossRef Gastaldo P et al (2016) SIM-ELM: connecting the elm model with similarity-function learning. Neural Netw 74:22–34CrossRef
Zurück zum Zitat He X, Niyogi P (2005) Locality preserving projections. Adv Neural Inf Process Syst 16(1):186–197 He X, Niyogi P (2005) Locality preserving projections. Adv Neural Inf Process Syst 16(1):186–197
Zurück zum Zitat Huang G, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16):3460–3468CrossRef Huang G, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16):3460–3468CrossRef
Zurück zum Zitat Huang G, Chen L, Siew C (2006a) Universal approximation using incremental constructive feed forward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef Huang G, Chen L, Siew C (2006a) Universal approximation using incremental constructive feed forward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef
Zurück zum Zitat Huang G, Zhu Q, Siew C (2006b) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef Huang G, Zhu Q, Siew C (2006b) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef
Zurück zum Zitat Huang G et al (2015a) Trends in extreme learning machines: a review. Neural Netw 61:32–48CrossRefMATH Huang G et al (2015a) Trends in extreme learning machines: a review. Neural Netw 61:32–48CrossRefMATH
Zurück zum Zitat Huang G, Bai Z et al (2015b) Local receptive fields based extreme learning machine. IEEE Comput Intell Mag 10(2):18–29CrossRef Huang G, Bai Z et al (2015b) Local receptive fields based extreme learning machine. IEEE Comput Intell Mag 10(2):18–29CrossRef
Zurück zum Zitat Iosifidis A, Tefas A, Pitas I (2015) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311–324CrossRef Iosifidis A, Tefas A, Pitas I (2015) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311–324CrossRef
Zurück zum Zitat Karasuyama M, Mamitsuka H (2013) Multiple graph label propagation by sparse integration. IEEE Trans Neural Netw Learn Syst 24(12):1999–2012CrossRef Karasuyama M, Mamitsuka H (2013) Multiple graph label propagation by sparse integration. IEEE Trans Neural Netw Learn Syst 24(12):1999–2012CrossRef
Zurück zum Zitat Kasun L, Yang Y et al (2016) Dimension reduction with extreme learning machine. IEEE Trans Image Process 25:3906–3918MathSciNetCrossRef Kasun L, Yang Y et al (2016) Dimension reduction with extreme learning machine. IEEE Trans Image Process 25:3906–3918MathSciNetCrossRef
Zurück zum Zitat Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRef Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRef
Zurück zum Zitat Li P, Bu J et al (2013) Relational multimanifold coclustering. IEEE Trans Cybern 43(6):1871–1881CrossRef Li P, Bu J et al (2013) Relational multimanifold coclustering. IEEE Trans Cybern 43(6):1871–1881CrossRef
Zurück zum Zitat Liang N, Huang G, Saratchandran P (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17:1411–1423CrossRef Liang N, Huang G, Saratchandran P (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17:1411–1423CrossRef
Zurück zum Zitat Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: International conference on machine learning, pp 663–670 Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: International conference on machine learning, pp 663–670
Zurück zum Zitat Liu G, Lin Z et al (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184MathSciNetCrossRef Liu G, Lin Z et al (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184MathSciNetCrossRef
Zurück zum Zitat Liu M, Liu B et al (2017) Semi-supervised low rank kernel learning algorithm via extreme learning machine. Int J Mach Learn Cybern 8(3):1039–1052CrossRef Liu M, Liu B et al (2017) Semi-supervised low rank kernel learning algorithm via extreme learning machine. Int J Mach Learn Cybern 8(3):1039–1052CrossRef
Zurück zum Zitat Lu C, Min H et al (2012) Robust and efficient subspace segmentation via least squares regression. In: European conference on computer vision, pp 347–360 Lu C, Min H et al (2012) Robust and efficient subspace segmentation via least squares regression. In: European conference on computer vision, pp 347–360
Zurück zum Zitat Mao W, Wang J, Xue Z (2017) An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern 8(4):1333–1345CrossRef Mao W, Wang J, Xue Z (2017) An ELM-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern 8(4):1333–1345CrossRef
Zurück zum Zitat Martinez A, Benavente R (1998) The AR face database, CVC technical report, vol 24 Martinez A, Benavente R (1998) The AR face database, CVC technical report, vol 24
Zurück zum Zitat Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112CrossRef Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112CrossRef
Zurück zum Zitat Peng Y, Wang S et al (2015) Discriminative graph regularized extreme learning machine and its application to face recognition. Neurocomputing 149:340–353CrossRef Peng Y, Wang S et al (2015) Discriminative graph regularized extreme learning machine and its application to face recognition. Neurocomputing 149:340–353CrossRef
Zurück zum Zitat Peng X et al (2017) Constructing the L2-graph for robust subspace learning and subspace clustering. IEEE Trans Cybern 47(4):1053–1066CrossRef Peng X et al (2017) Constructing the L2-graph for robust subspace learning and subspace clustering. IEEE Trans Cybern 47(4):1053–1066CrossRef
Zurück zum Zitat Qiao S, Tang C et al (2010) PutMode: prediction of uncertain trajectories in moving objects databases. Appl Intell 33(3):370–386CrossRef Qiao S, Tang C et al (2010) PutMode: prediction of uncertain trajectories in moving objects databases. Appl Intell 33(3):370–386CrossRef
Zurück zum Zitat Qiao S, Han N et al (2015a) TraPlan: an effective three-in-one trajectory-prediction model in transportation networks. IEEE Trans Intell Transp Syst 16(3):1188–1198CrossRef Qiao S, Han N et al (2015a) TraPlan: an effective three-in-one trajectory-prediction model in transportation networks. IEEE Trans Intell Transp Syst 16(3):1188–1198CrossRef
Zurück zum Zitat Qiao S, Shen D et al (2015b) A self-adaptive parameter selection trajectory prediction approach via hidden Markov models. IEEE Trans Intell Transp Syst 16(1):284–296CrossRef Qiao S, Shen D et al (2015b) A self-adaptive parameter selection trajectory prediction approach via hidden Markov models. IEEE Trans Intell Transp Syst 16(1):284–296CrossRef
Zurück zum Zitat Remmert R (2012) Theory of complex functions. Springer, Berlin Remmert R (2012) Theory of complex functions. Springer, Berlin
Zurück zum Zitat Rong H, Huang G, Sundararajan N (2009) Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern B 39:1067–1072CrossRef Rong H, Huang G, Sundararajan N (2009) Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern B 39:1067–1072CrossRef
Zurück zum Zitat Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef
Zurück zum Zitat Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-propagating errors. Nature 323(9):533–536CrossRefMATH Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-propagating errors. Nature 323(9):533–536CrossRefMATH
Zurück zum Zitat Salaken S et al (2017) Extreme learning machine based transfer learning algorithms: a survey. Neurocomputing 267:516–524CrossRef Salaken S et al (2017) Extreme learning machine based transfer learning algorithms: a survey. Neurocomputing 267:516–524CrossRef
Zurück zum Zitat Tang J, Deng C, Huang G (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821MathSciNetCrossRef Tang J, Deng C, Huang G (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821MathSciNetCrossRef
Zurück zum Zitat Terence S, Simon B, Maan B (2003) The CMU pose, illumination, and expression (PIE) database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618CrossRef Terence S, Simon B, Maan B (2003) The CMU pose, illumination, and expression (PIE) database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618CrossRef
Zurück zum Zitat Wang J, Bensmail H, Gao X (2013) Multiple graph regularized nonnegative matrix factorization. Pattern Recognit 46(10):2840–2847CrossRefMATH Wang J, Bensmail H, Gao X (2013) Multiple graph regularized nonnegative matrix factorization. Pattern Recognit 46(10):2840–2847CrossRefMATH
Zurück zum Zitat Wang Z et al (2017) Kernel fusion based extreme learning machine for cross-location activity recognition. Inf Fusion 37:1–9CrossRef Wang Z et al (2017) Kernel fusion based extreme learning machine for cross-location activity recognition. Inf Fusion 37:1–9CrossRef
Zurück zum Zitat Wright J, Yang AY et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef Wright J, Yang AY et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef
Zurück zum Zitat Yang B, Chen S (2010) Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing 74(1):301–314CrossRef Yang B, Chen S (2010) Sample-dependent graph construction with application to dimensionality reduction. Neurocomputing 74(1):301–314CrossRef
Zurück zum Zitat Yang L, Yang S et al (2017) Incremental Laplacian regularization extreme learning machine for online learning. Appl Soft Comput 59:546–555CrossRef Yang L, Yang S et al (2017) Incremental Laplacian regularization extreme learning machine for online learning. Appl Soft Comput 59:546–555CrossRef
Zurück zum Zitat Yao L, Ge Z (2018) Deep learning of semi-supervised process data with hierarchical extreme learning machine and soft sensor application. IEEE Trans Ind Electron 65(2):1490–1498CrossRef Yao L, Ge Z (2018) Deep learning of semi-supervised process data with hierarchical extreme learning machine and soft sensor application. IEEE Trans Ind Electron 65(2):1490–1498CrossRef
Zurück zum Zitat Yi Y, Zhou W et al (2014) Face recognition using spatially smoothed discriminant structure-preserved projections. J Electron Imaging 23(2):023012-1-20CrossRef Yi Y, Zhou W et al (2014) Face recognition using spatially smoothed discriminant structure-preserved projections. J Electron Imaging 23(2):023012-1-20CrossRef
Zurück zum Zitat Yi Y, Bi C et al (2015a) Semi-supervised local ridge regression for local matching based face recognition. Neurocomputing 167:132–146CrossRef Yi Y, Bi C et al (2015a) Semi-supervised local ridge regression for local matching based face recognition. Neurocomputing 167:132–146CrossRef
Zurück zum Zitat Yi Y, Shi Y et al (2015b) Label propagation based semi-supervised non-negative matrix factorization for feature extraction. Neurocomputing 149:1021–1037CrossRef Yi Y, Shi Y et al (2015b) Label propagation based semi-supervised non-negative matrix factorization for feature extraction. Neurocomputing 149:1021–1037CrossRef
Zurück zum Zitat Yu J, Wang M et al (2012) Semi-supervised multiview distance metric learning for cartoon synthesis. IEEE Trans Image Process 21(11):4636–4648MathSciNetCrossRefMATH Yu J, Wang M et al (2012) Semi-supervised multiview distance metric learning for cartoon synthesis. IEEE Trans Image Process 21(11):4636–4648MathSciNetCrossRefMATH
Zurück zum Zitat Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8(3):1009–1017CrossRef Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8(3):1009–1017CrossRef
Zurück zum Zitat Zhang L, Zhang D (2016) Robust visual knowledge transfer via extreme learning machine-based domain adaptation. IEEE Trans Image Process 25(10):4959–4973MathSciNetCrossRef Zhang L, Zhang D (2016) Robust visual knowledge transfer via extreme learning machine-based domain adaptation. IEEE Trans Image Process 25(10):4959–4973MathSciNetCrossRef
Zurück zum Zitat Zhang L, Zhang D (2017) Evolutionary cost-sensitive extreme learning machine. IEEE Trans Neural Netw Learn Syst 28(12):3045–3060MathSciNetCrossRef Zhang L, Zhang D (2017) Evolutionary cost-sensitive extreme learning machine. IEEE Trans Neural Netw Learn Syst 28(12):3045–3060MathSciNetCrossRef
Zurück zum Zitat Zhang L, Zhang L et al (2010) Online finger-knuckle-print verification for personal authentication. Pattern Recognit 43(7):2560–2571CrossRefMATH Zhang L, Zhang L et al (2010) Online finger-knuckle-print verification for personal authentication. Pattern Recognit 43(7):2560–2571CrossRefMATH
Zurück zum Zitat Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceeding of IEEE international conference on computer vision, pp 471–478 Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceeding of IEEE international conference on computer vision, pp 471–478
Zurück zum Zitat Zhang Z, Zhao M, Chow TWS (2015) Graph based constrained semi-supervised learning framework via label propagation over adaptive neighborhood. IEEE Trans Knowl Data Eng 27(9):2362–2376CrossRef Zhang Z, Zhao M, Chow TWS (2015) Graph based constrained semi-supervised learning framework via label propagation over adaptive neighborhood. IEEE Trans Knowl Data Eng 27(9):2362–2376CrossRef
Zurück zum Zitat Zhang B et al (2018) Ensemble based reactivated regularization extreme learning machine for classification. Neurocomputing 275:255–266CrossRef Zhang B et al (2018) Ensemble based reactivated regularization extreme learning machine for classification. Neurocomputing 275:255–266CrossRef
Zurück zum Zitat Zhou D et al (2004) Learning with local and global consistency. Adv Neural Inf Process Syst 16:321–328 Zhou D et al (2004) Learning with local and global consistency. Adv Neural Inf Process Syst 16:321–328
Zurück zum Zitat Zhou Y, Liu B et al (2015) Semi-supervised extreme learning machine with manifold and pairwise constraints regularization. Neurocomputing 149(PA):180–186CrossRef Zhou Y, Liu B et al (2015) Semi-supervised extreme learning machine with manifold and pairwise constraints regularization. Neurocomputing 149(PA):180–186CrossRef
Metadaten
Titel
Adaptive multiple graph regularized semi-supervised extreme learning machine
verfasst von
Yugen Yi
Shaojie Qiao
Wei Zhou
Caixia Zheng
Qinghua Liu
Jianzhong Wang
Publikationsdatum
06.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 11/2018
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-018-3109-x

Weitere Artikel der Ausgabe 11/2018

Soft Computing 11/2018 Zur Ausgabe