Skip to main content

Advertisement

Log in

Synaptic compensation on Hopfield network: implications for memory rehabilitation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary patterns. Here, we investigate how the performance of this network on pattern recognition task is altered when neurons are removed and the weights of the synapses corresponding to these deleted neurons are divided among the remaining synapses. Five distinct ways of distributing such weights are evaluated. We speculate how this numerical work about synaptic compensation may help to guide experimental studies on memory rehabilitation interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Article  MathSciNet  Google Scholar 

  2. Haykin S (1999) Neural networks—a comprehensive foundation. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  3. Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233:625–633

    Article  Google Scholar 

  4. Monteiro LHA, Pelizzari Filho A, Chaui-Berlinck JG, Piqueira JRC (2007) Oscillation death in a two-neuron network with delay in a self-connection. J Biol Syst 15:49–61

    Article  MATH  Google Scholar 

  5. Atencia M, Joya G, Sandoval F (2004) Parametric identification of robotic systems with stable time-varying Hopfield networks. Neural Comput Appl 13:270–280

    Article  Google Scholar 

  6. Sun Y (2000) Hopfield neural network based algorithms for image restoration and reconstruction—part I: algorithms and simulations. IEEE Trans Signal Process 48:2105–2118

    Article  MATH  Google Scholar 

  7. Stauffer D, Aharony A, Fontoura Costa L, Adler J (2003) Efficient Hopfield pattern recognition on a scale-free network. Eur Phys J B32:395–399

    Google Scholar 

  8. Oshima H, Odagaki T (2007) Storage capacity and retrieval time of small-world neural networks. Phys Rev E 76:036114

    Article  Google Scholar 

  9. Young SS, Scott PD, Nasrabadi NM (1997) Object recognition using multilayer Hopfield neural network. IEEE Trans Image Process 6:357–372

    Article  Google Scholar 

  10. Yang XS, Huang Y (2006) Complex dynamics in simple Hopfield neural networks. Chaos 16:033114

    Article  Google Scholar 

  11. Tsodyks MV, Feigelman MV (1988) The enhanced storage capacity in neural networks with low activity level. Europhys Lett 6:101–105

    Article  Google Scholar 

  12. Horn D, Ruppin E, Usher M, Hermann M (1993) Neural network modeling of memory deterioration in Alzheimer’s disease. Neural Comput 5:736–749

    Article  Google Scholar 

  13. Ruppin E, Reggia JA (1995) A neural model of memory impairment in diffuse cerebral atrophy. Br J Psychiatry 166:19–28

    Article  Google Scholar 

  14. Grober E, Hall CB, Lipton RB, Zonderman AB, Resnick SM, Kawas C (2008) Memory impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer’s disease. J Int Neurophychol Soc 14:266–278

    Google Scholar 

  15. Jalbert JJ, Daiello LA, Lapane KL (2008) Dementia of the Alzheimer type. Epidemiol Rev 30:15–34

    Article  Google Scholar 

  16. Arendt T (2001) Disturbance of neuronal plasticity is a critical pathogenetic event in Alzheimer’s disease. Int J Dev Neurosci 19:231–245

    Article  Google Scholar 

  17. Davis GW, Bezprozvanny I (2001) Maintaining the stability of neural function: a homeostatic hypothesis. Annu Rev Physiol 63:847–869

    Article  Google Scholar 

  18. Rich MM, Wenner P (2007) Sensing and expressing homeostatic synaptic plasticity. Trends Neurosci 30:119–125

    Article  Google Scholar 

  19. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  20. Grady MS, Jane JA, Steward O (1989) Synaptic reorganization within the human central nervous system following injury. J Neurosurg 71:534–537

    Article  Google Scholar 

  21. Teter B, Ashford JW (2002) Neuroplasticity in Alzheimer’s disease. J Neurosci Res 70:402–437

    Article  Google Scholar 

  22. Gaudreault SB, Blain JF, Gratton JP, Poirier J (2005) A role for caveolin-1 in post-injury reactive neuronal plasticity. J Neurochem 92:831–839

    Article  Google Scholar 

  23. Shamy JL, Buckmaster CA, Amaral DG, Calhoun ME, Rapp PR (2010) Reactive plasticity in the dentate gyrus following bilateral entorhinal cortex lesions in cynomolgus monkeys. J Comp Neurol 502:192–201

    Article  Google Scholar 

  24. Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919–926

    Article  Google Scholar 

  25. Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87:404–415

    Article  MATH  Google Scholar 

  26. Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494

    Article  Google Scholar 

  27. Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118:167–179

    Article  Google Scholar 

  28. Papoulis A, Unnikrishna Pillai S (2002) Probability, random variables and stochastic processes. McGraw-Hill, New York

    Google Scholar 

  29. Finch CE (2003) Neurons, glia, and plasticity in normal brain aging. Neurobiol Aging 24:S123–S127

    Article  Google Scholar 

  30. Garcia-Alloza M, Tsang SW, Gil-Bea FJ, Francis PT, Lai MK, Marcos B, Chen CP, Ramirez MJ (2006) Involvement of the GABAergic system in depressive symptoms of Alzheimer’s disease. Neurobiol Aging 27:1110–1117

    Article  Google Scholar 

  31. Serra M, Guaraldi M, Shea TB (2010) Inhibitory neurons modulate spontaneous signaling in cultured cortical neurons: density-dependent regulation of excitatory neuronal signaling. Phys Biol 7:026009

    Article  Google Scholar 

  32. Rowan MJ, Klyubin I, Cullen WK, Anwyl R (2003) Synaptic plasticity in animal models of early Alzheimer’s disease. Philos Trans R Soc Lond B 358:821–828

    Article  Google Scholar 

  33. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    Article  Google Scholar 

Download references

Acknowledgments

LHAM is partially supported by the Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. A. Monteiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menezes, R.A., Monteiro, L.H.A. Synaptic compensation on Hopfield network: implications for memory rehabilitation. Neural Comput & Applic 20, 753–757 (2011). https://doi.org/10.1007/s00521-010-0480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-010-0480-7

Keywords

Navigation