Skip to main content
Log in

An ε-twin support vector machine for regression

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study proposes a new regressor—ε-twin support vector regression (ε-TSVR) based on TSVR. ε-TSVR determines a pair of ε-insensitive proximal functions by solving two related SVM-type problems. Different form only empirical risk minimization is implemented in TSVR, the structural risk minimization principle is implemented by introducing the regularization term in primal problems of our ε-TSVR, yielding the dual problems to be stable positive definite quadratic programming problems, so can improve the performance of regression. In addition, the successive overrelaxation technique is used to solve the optimization problems to speed up the training procedure. Experimental results for both artificial and real datasets show that, compared with the popular ε-SVR, LS-SVR and TSVR, our ε-TSVR has remarkable improvement of generalization performance with short training time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  2. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  3. Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167

    Article  Google Scholar 

  4. Deng NY, Tian YJ, Zhang CH (2012) Support vector machines: theory, algorithms, and extensions. CRC Press, Boca Raton

    Google Scholar 

  5. Noble WS (2004) Support vector machine applications in computational biology. In: Schöelkopf B, Tsuda K, Vert J-P (eds) Kernel methods in computational biology. MIT Press, Cambridge, pp 71–92

  6. Lee S, Verri A (2002) Pattern recognition with support vector machines. In: First international workshop, Springer, Niagara Falls, Canada

  7. Ince H, Trafalis TB (2002) Support vector machine for regression and applications to financial forecasting. In: International joint conference on neural networks, Como, Italy, IEEE-INNS-ENNS

  8. Suykens JAK, Lukas L, van Dooren P, De Moor B, Vandewalle J (1999) Least squares support vector machine classifiers: a large scale algorithm. In: Proceedings of European conference of circuit theory design, pp 839–842

  9. Mangasarian OL, Wild EW (2006) Multisurface proximal support vector classification via generalize deigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74

    Article  Google Scholar 

  10. Jayadeva, Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910

    Article  Google Scholar 

  11. Kumar MA, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recognit Lett 29(13):1842–1848

    Article  Google Scholar 

  12. Shao YH, Deng NY (2012) A novel margin based twin support vector machine with unity norm hyperplanes. Neural Comput Appl. doi:10.1007/s00521-012-0894-5

  13. Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535–7543

    Article  Google Scholar 

  14. Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane proximal classifier. Signal Process 89(4):510–522

    Article  MATH  Google Scholar 

  15. Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968

    Article  Google Scholar 

  16. Shao YH, Deng NY (2012) A coordinate descent margin based-twin support vector machine for classification. Neural Netw 25:114–121

    Article  MATH  Google Scholar 

  17. Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44(10–11):2678–2692

    Article  MATH  Google Scholar 

  18. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MathSciNet  Google Scholar 

  19. Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372

    Article  Google Scholar 

  20. Zhong P, Xu Y, Zhao Y (2011) Training twin support vector regression via linear programming. Neural Comput Appl. doi:10.1007/s 00521-011-0526-6

  21. Chen X, Yang J, Liang J, Ye Q (2011) Smooth twin support vector regression. Neural Comput Appl. doi:10.1007/s00521-010-0454-9

  22. Peng X (2010) Primal twin support vector regression and its sparse approximation. Neurocomputing 73(16–18):2846–2858

    Article  Google Scholar 

  23. Peng X (2012) Efficient twin parametric insensitive support vector regression model. Neurocomputing 79:26–38

    Article  Google Scholar 

  24. Chen X, Yang J, Liang J (2011) A flexible support vector machine for regression. Neural Comput Appl. doi:10.1007/s00521-011-0623-5

  25. Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge

    Google Scholar 

  26. Bi J, Bennett KP (2003) A geometric approach to support vector regression. Neurocomputing 55:79–108

    Article  Google Scholar 

  27. Smola A, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  MathSciNet  Google Scholar 

  28. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The John Hopkins University Press, Baltimore

    MATH  Google Scholar 

  29. Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Proceedings of seventh international conference on knowledge and data discovery, San Francisco, pp 77–86

  30. Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10(5):1032–1037

    Article  Google Scholar 

  31. http://www.mathworks.com (2007)

  32. Pelckmans K, Suykens JAK, Van Gestel T, De Brabanter D, Lukas L, Hamers B, De Moor B, Vandewalle J (2003) LS-SVMlab: a Matlab/C toolbox for least squares support vector machines. Available at http://www.esat.kuleuven.ac.be/sista/lssvmlab

  33. Weisberg S (1985) Applied linear regression seconded. Wiley, New York

    Google Scholar 

  34. Staudte RG, Sheather SJ (1990) Robust estimationand testing: Wiley series in probability and mathematical statistics. Wiley, New York

    Book  Google Scholar 

  35. Lee CC, Chung PC, Tsai JR, Chang CI (1999) Robust radial basis function neural networks. IEEE Trans Syst Man Cybern B Cybern 29(6):674–685

    Google Scholar 

  36. Eubank RL (1999) Nonparametric regression and spline smoothing statistics: textbooks and monographs, vol 157, seconded. Marcel Dekker, New York

    Google Scholar 

  37. Blake CL, Merz CJ (1998) UCI repository for machine learning databases. Department of Information and Computer Sciences, University of California, Irvine, http://www.ics.uci.edu/mlearn/MLRepository.html

  38. Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least squares support vector machine. IEEE Trans Neural Netw 18:1–13

    Article  Google Scholar 

  39. Wen W, Hao Z, Yang X (2008) A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression. Neurocomputing 71:3096–3103

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable suggestions. This work is supported by the National Natural Science Foundation of China (No. 10971223, No. 11071252, No. 11161045 and No. 61101231) and the Zhejiang Provincial Natural Science Foundation of China (No. Y1100237, No. Y1100629).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Hua Zhang or Nai-Yang Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, YH., Zhang, CH., Yang, ZM. et al. An ε-twin support vector machine for regression. Neural Comput & Applic 23, 175–185 (2013). https://doi.org/10.1007/s00521-012-0924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0924-3

Keywords

Navigation