Skip to main content
Log in

Local sparse representation projections for face recognition

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

How to define the sparse affinity weight matrices is still an open problem in existing manifold learning algorithm. In this paper, we propose a novel supervised learning method called local sparse representation projections (LSRP) for linear dimensionality reduction. Differing from sparsity preserving projections (SPP) and the recent manifold learning methods such as locality preserving projections (LPP), LSRP introduces the local sparse representation information into the objective function. Although there are no labels used in the local sparse representation, it still can provide better measure coefficients and significant discriminant abilities. By combining the local interclass neighborhood relationships and sparse representation information, LSRP aims to preserve the local sparse reconstructive relationships of the data and simultaneously maximize the interclass separability. Comprehensive comparison and extensive experiments show that LSRP achieves higher recognition rates than principle component analysis, linear discriminant analysis and the state-of-the-art techniques such as LPP, SPP and maximum variance projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  2. Joliffe I (1986) Principal component analysis. Springer, New York

    Book  Google Scholar 

  3. Fukunnaga K (1991) Introduction to statistical pattern recognition, 2nd edn. Academic Press, London

    Google Scholar 

  4. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  5. Belhumeour PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  6. Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a Kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  7. Yang J, Frangi AF, Zhang D, Yang J-Y, Zhong J (2005) KPCA plus LDA: a complete Kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244

    Article  Google Scholar 

  8. Tenenbaum JB, deSilva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  Google Scholar 

  9. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  10. Zhang Z, Zha H (2004) Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput 26(1):313–338

    Article  MathSciNet  MATH  Google Scholar 

  11. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Proc Adv Neural Inf Process Syst Vancouver Can 14:585–591

    Google Scholar 

  12. Bengio Y, Paiement JF, Vincent P, Delalleau O, Roux N, Ouimet M (2003) Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. Adv Neural Inf Process Syst 16:177–184

    Google Scholar 

  13. He X, Niyogi P (2003) Locality preserving projections. In: Proceedings of the seventeenth annual conference on neural information processing systems, Vancouver and Whistler, Canada

  14. Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embedding and its variants. Proc IEEE Conf Comput Vis Pattern Recognit 2:846–853

    Google Scholar 

  15. Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  16. Fu Y, Yan S, Huang TS (2008) Classification and feature extraction by simplexization. IEEE Trans Inf Forensics Secur 3(1):91–100

    Article  Google Scholar 

  17. Zhang T, Yang J, Wang H, Du C (2007) Maximum variance projections for face recognition. Opt Eng 46(6):0672061–0672068

    Google Scholar 

  18. Fu Y, Yan S, Huang TS (2008) Correlation metric for generalized feature extraction. IEEE Trans Pattern Anal Mach Intell 30(12):2229–2235

    Article  Google Scholar 

  19. Chung F (1997) Spectral graph theory, CBMS Regional Conference Series in Mathematics, no. 92

  20. Wright J, Yang A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  21. Huang K, Aviyente S (2006) Sparse representation for signal classification. Adv Neural Inf Process Syst 19:609–616

    Google Scholar 

  22. Lishan Q, Songcan C, Xiaoyang T (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43:331–341

    Article  MATH  Google Scholar 

  23. He X, Cai D, Yan S, Zhang H (2005) Neighborhood preserving embedding. Proc Int Conf Comput Vis (ICCV) 2:1208–1213

    Google Scholar 

  24. Candes E., Romberg J (2005) l 1-magic: recovery of sparse signals via convex programming. http://www.acm.caltech.edu/l1magic/

  25. Chen S, Donoho D, Sarnders M (2001) Atomic decomposition by Basis pursuit. SIAM Rev 43(1):129–159

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang W, Sun C, Zhang L (2011) A multi-manifold discriminant analysis method for image feature extraction. Pattern Recognit 44(8):1649–1657

    Article  MATH  Google Scholar 

  27. Zhao C, Liu C, Lai Z (2011) Multi-scale gist feature manifold for building recognition. Neurocomputing 74(17):2929–2940

    Article  Google Scholar 

  28. Zhao H, Sun S, Jing Z, Yang J (2006) Local structure based supervised feature extraction. Pattern Recognit 39(8):1546–1550

    Article  MATH  Google Scholar 

  29. Zhao H, Wong W (2012) Supervised optimal locality preserving projection. Pattern Recognit 45(1):1546–1550

    Google Scholar 

  30. Xu Y, Zhong A, Yang J, Zhang D (2010) LPP solution schemes for use with face recognition. Pattern Recognit 43(12):4165–4176

    Article  MATH  Google Scholar 

  31. Lai Z, Wan M, Jin Z (2011) Locality preserving embedding for face and handwriting digital recognition. Neural Comput Appl 20(4):565–573

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Natural Science Foundation of China under grant No. 61203376, 61203243, 61005005, 61005008, 61105054, Hi-Tech Research and Development Program of China under grant No. 2006AA01Z119 and China Postdoctoral Science Foundation funded project 2012M511479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, Z., Li, Y., Wan, M. et al. Local sparse representation projections for face recognition. Neural Comput & Applic 23, 2231–2239 (2013). https://doi.org/10.1007/s00521-012-1174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1174-0

Keywords

Navigation