Skip to main content
Erschienen in: Neural Computing and Applications 1/2017

20.05.2016 | Original Article

Performance evaluation of nature-inspired algorithms for the design of bored pile foundation by artificial neural networks

verfasst von: Gurdeepak Singh, B. S. Walia

Erschienen in: Neural Computing and Applications | Sonderheft 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The bored pile foundations are gaining popularity in construction industry because of ease in construction, low noise and vibrations. The load-carrying capacity of bored pile foundations is dependent upon soil–structure interaction. This being a three-dimensional problem is further complicated due to large variations in soil properties. Also, modeling of soil is difficult because of its nonlinear and anisotropic nature. For such cases, the artificial neural network (ANN) and nature-inspired optimization techniques have been found to be highly suitable to attain acceptable levels of accuracy. In the present study, two ANNs have been trained for determination of unit skin friction and unit end bearing capacity from soil properties. The training data for ANNs have been obtained from finite element analysis of pile foundations for 4809 different soil types. A dataset of 50 field pile loading test results is used to check the performance of the developed artificial neural networks. To enhance the accuracy of the developed ANNs, two correlation factors have been determined by applying four popular nature-inspired optimization algorithms: particle swarm optimization (PSO), fire flies, cuckoo search and bacterial foraging. In order to rank these optimization algorithms, parametric and nonparametric statistical analysis has been carried out. The results of optimization algorithms have been compared to find the most suitable solution for this multi-dimensional problem which has a large number of nonlinear equality constraints. The effectiveness and suitability of the nature-inspired algorithms for the presented problem have been demonstrated by computing correlation coefficients with field pile loading test results and then with the total execution time taken by each algorithm. The results of comparison show that PSO is the best performer for such constrained problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cui L, Sheng D (2005) Genetic algorithms in probabilistic finite element analysis of geotechnical problems. Comput Geotech 32:555–563CrossRef Cui L, Sheng D (2005) Genetic algorithms in probabilistic finite element analysis of geotechnical problems. Comput Geotech 32:555–563CrossRef
2.
Zurück zum Zitat Liu M, Qie Z, Wu X, Dong W, Zheng H (2008) Model optimization of load-bearing capacity of macadam pile composite foundation based on genetic algorithms. In: IEEE control and decision conference Yantai, pp 3903–3907 Liu M, Qie Z, Wu X, Dong W, Zheng H (2008) Model optimization of load-bearing capacity of macadam pile composite foundation based on genetic algorithms. In: IEEE control and decision conference Yantai, pp 3903–3907
3.
Zurück zum Zitat Liu X, Cheng G, Wang B, Lin S (2012) Optimum design of pile foundation by automatic grouping genetic algorithms. ISRN Civil Engineering Liu X, Cheng G, Wang B, Lin S (2012) Optimum design of pile foundation by automatic grouping genetic algorithms. ISRN Civil Engineering
4.
Zurück zum Zitat Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among five evolutionary based optimization algorithms. Adv Eng Inf 19:43–53CrossRef Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among five evolutionary based optimization algorithms. Adv Eng Inf 19:43–53CrossRef
5.
Zurück zum Zitat Chan WT, Chow YK, Liu LF (1995) Neural network: an alternative to pile driving formulas. Comput Geotech 17:135–156CrossRef Chan WT, Chow YK, Liu LF (1995) Neural network: an alternative to pile driving formulas. Comput Geotech 17:135–156CrossRef
7.
Zurück zum Zitat Ismail A, Jeng D-S (2011) Modelling load settlement behaviour of piles using high order neural network (HON-PILE model). Eng Appl Artif Intell 24(5):813–821CrossRef Ismail A, Jeng D-S (2011) Modelling load settlement behaviour of piles using high order neural network (HON-PILE model). Eng Appl Artif Intell 24(5):813–821CrossRef
8.
Zurück zum Zitat Zhang JR, Zhang J, Lok TM, Lyu MR (2007) A hybrid particle swarm optimization back-propagation algorithm for feedforward neural network training. Appl Math Comput 185:1026–1037MATH Zhang JR, Zhang J, Lok TM, Lyu MR (2007) A hybrid particle swarm optimization back-propagation algorithm for feedforward neural network training. Appl Math Comput 185:1026–1037MATH
9.
Zurück zum Zitat Cui Y, Ju SG, Han F, Gu TY (2009) An improved approach combining random PSO with BP for feedforward neural networks. Artif Intell Comput Intell 5855:361–368CrossRef Cui Y, Ju SG, Han F, Gu TY (2009) An improved approach combining random PSO with BP for feedforward neural networks. Artif Intell Comput Intell 5855:361–368CrossRef
10.
Zurück zum Zitat Ismail A, Jeng D-S, Zhang LL (2013) An optimised product-unit neural network with a novel PSO–BP hybrid training algorithm: applications to load–deformation analysis of axially loaded piles. Eng Appl Artif Intell 26(10):2305–2314CrossRef Ismail A, Jeng D-S, Zhang LL (2013) An optimised product-unit neural network with a novel PSO–BP hybrid training algorithm: applications to load–deformation analysis of axially loaded piles. Eng Appl Artif Intell 26(10):2305–2314CrossRef
11.
Zurück zum Zitat Goh ATC (1994) Nonlinear modelling in geotechnical engineering using neural networks. Aust Civil Eng Trans 36(4):293–297 Goh ATC (1994) Nonlinear modelling in geotechnical engineering using neural networks. Aust Civil Eng Trans 36(4):293–297
12.
Zurück zum Zitat Goh ATC (1995) Empirical design in geotechnics using neural networks. Geotechnique 45(4):709–714CrossRef Goh ATC (1995) Empirical design in geotechnics using neural networks. Geotechnique 45(4):709–714CrossRef
13.
Zurück zum Zitat Goh ATC (1995) Back-propagation neural networks for modeling complex systems. Artif Intell Eng 9:143–151CrossRef Goh ATC (1995) Back-propagation neural networks for modeling complex systems. Artif Intell Eng 9:143–151CrossRef
14.
Zurück zum Zitat Goh ATC (1996) Pile driving records reanalyzed using neural networks. J Geotech Eng ASCE 122(6):492–495CrossRef Goh ATC (1996) Pile driving records reanalyzed using neural networks. J Geotech Eng ASCE 122(6):492–495CrossRef
15.
Zurück zum Zitat Lee IM, Lee JH (1996) Prediction of pile bearing capacity using artificial neural networks. Comput Geotech 18(3):189–200CrossRef Lee IM, Lee JH (1996) Prediction of pile bearing capacity using artificial neural networks. Comput Geotech 18(3):189–200CrossRef
16.
Zurück zum Zitat Abu-Kiefa MA (1998) General regression neural networks for driven piles in cohesionless soils. J Geotech Geoenviron Eng 124(12):1177–1185CrossRef Abu-Kiefa MA (1998) General regression neural networks for driven piles in cohesionless soils. J Geotech Geoenviron Eng 124(12):1177–1185CrossRef
17.
Zurück zum Zitat Shahin MA, Jaksa MB (2005) Neural network prediction of pullout capacity of marquee ground anchors. Comput Geotech 32(3):153–163CrossRef Shahin MA, Jaksa MB (2005) Neural network prediction of pullout capacity of marquee ground anchors. Comput Geotech 32(3):153–163CrossRef
18.
Zurück zum Zitat Shahin MA, Jaksa MB (2006) Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks. Can Geotech J 43(6):626–637CrossRef Shahin MA, Jaksa MB (2006) Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks. Can Geotech J 43(6):626–637CrossRef
19.
Zurück zum Zitat Nejad PF, Jaksa MB, Kakhi M, McCabe BA (2009) Prediction of pile settlement using artificial neural networks based on standard penetration test data. Comput Geotech 36:1125–1133CrossRef Nejad PF, Jaksa MB, Kakhi M, McCabe BA (2009) Prediction of pile settlement using artificial neural networks based on standard penetration test data. Comput Geotech 36:1125–1133CrossRef
20.
Zurück zum Zitat Alkroosh I, Nikraz H (2014) Predicting pile dynamic capacity via application of an evolutionary algorithm. Soils Found 54(2):233–242CrossRef Alkroosh I, Nikraz H (2014) Predicting pile dynamic capacity via application of an evolutionary algorithm. Soils Found 54(2):233–242CrossRef
21.
Zurück zum Zitat Das BM (1999) Principles of foundation engineering, 4th edn. Brooks/Cole Publishing Co., Pacific Grove California Das BM (1999) Principles of foundation engineering, 4th edn. Brooks/Cole Publishing Co., Pacific Grove California
22.
Zurück zum Zitat Poulos HG, Davis E (1980) Pile foundation analysis and design. Wiley, New York Poulos HG, Davis E (1980) Pile foundation analysis and design. Wiley, New York
23.
Zurück zum Zitat Meyerhof GG (1976) Bearing capacity and settlement of pile foundations. J Geotech Eng Div ASCE 102(3):195–228 Meyerhof GG (1976) Bearing capacity and settlement of pile foundations. J Geotech Eng Div ASCE 102(3):195–228
24.
Zurück zum Zitat Vesic AS (1977) Design of pile foundations. Nat Cooperative Hwy Res Program Synthesis of Pract No 42 Transportation Research Board, Washington Vesic AS (1977) Design of pile foundations. Nat Cooperative Hwy Res Program Synthesis of Pract No 42 Transportation Research Board, Washington
25.
Zurück zum Zitat Mindlin RD (1936) Force at a point in the interior of a semi-infinite soil. Physics 7:195–202CrossRefMATH Mindlin RD (1936) Force at a point in the interior of a semi-infinite soil. Physics 7:195–202CrossRefMATH
26.
Zurück zum Zitat Alexander H (1941) Solution of problems of elasticity by the framework method. J Appl Mech 84:169–175MathSciNet Alexander H (1941) Solution of problems of elasticity by the framework method. J Appl Mech 84:169–175MathSciNet
27.
28.
Zurück zum Zitat Cook R, Malkus D, Plesha M (1989) Concepts and applications of finite element analysis. Wiley, New YorkMATH Cook R, Malkus D, Plesha M (1989) Concepts and applications of finite element analysis. Wiley, New YorkMATH
29.
Zurück zum Zitat Cook R (1995) Finite element modeling for stress analysis. Wiley, New YorkMATH Cook R (1995) Finite element modeling for stress analysis. Wiley, New YorkMATH
30.
Zurück zum Zitat Coduto D (2001) Foundation design: principals and practices, 2nd edn. Prentice-Hall Inc, New Jersey Coduto D (2001) Foundation design: principals and practices, 2nd edn. Prentice-Hall Inc, New Jersey
31.
Zurück zum Zitat Goldscheider M (1984) True triaxial tests on dense sands. Constitutive relations for soils. Balkema, Rotterdam Goldscheider M (1984) True triaxial tests on dense sands. Constitutive relations for soils. Balkema, Rotterdam
32.
Zurück zum Zitat Abdelrahman GE, Shaarawi EM, Abouzaid KS (2003) Interpretation of axial pile load test results for continuous flight auger piles. In: Emerging technologies in structural engineering proceedings of the 9th Arab structural engineering conference, Abu Dhabi, pp 791–802 Abdelrahman GE, Shaarawi EM, Abouzaid KS (2003) Interpretation of axial pile load test results for continuous flight auger piles. In: Emerging technologies in structural engineering proceedings of the 9th Arab structural engineering conference, Abu Dhabi, pp 791–802
33.
Zurück zum Zitat Alsamman O (1995) The use of CPT for calculating axial capacity of drilled shaft. PhD Thesis University of Illinois Urbana Alsamman O (1995) The use of CPT for calculating axial capacity of drilled shaft. PhD Thesis University of Illinois Urbana
34.
Zurück zum Zitat Eslami A (1996) Bearing capacity of piles from cone penetration data. PhD Thesis University of Ottawa, Ottawa Eslami A (1996) Bearing capacity of piles from cone penetration data. PhD Thesis University of Ottawa, Ottawa
35.
Zurück zum Zitat Yang XS (2010) Engineering optimisation: an introduction with metaheuristic applications. Wiley, New YorkCrossRef Yang XS (2010) Engineering optimisation: an introduction with metaheuristic applications. Wiley, New YorkCrossRef
36.
Zurück zum Zitat Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, UK Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, UK
37.
Zurück zum Zitat Blum C, Aguilera MJB, Roli A, Sampels M (2008) Hybrid metaheuristics: an emerging approach to optimization. Studies in computational intelligence. Springer, BerlinCrossRefMATH Blum C, Aguilera MJB, Roli A, Sampels M (2008) Hybrid metaheuristics: an emerging approach to optimization. Studies in computational intelligence. Springer, BerlinCrossRefMATH
38.
Zurück zum Zitat Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948CrossRef Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948CrossRef
39.
Zurück zum Zitat Angeline P (1998) Using selection to improve particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation. IEEE world congress on computational intelligence, pp 84–89 Angeline P (1998) Using selection to improve particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation. IEEE world congress on computational intelligence, pp 84–89
40.
Zurück zum Zitat Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: Proceedings of the 7th international conference on evolutionary programming VII ser EP’98 London, UK. Springer, Berlin, pp 611–616 Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. In: Proceedings of the 7th international conference on evolutionary programming VII ser EP’98 London, UK. Springer, Berlin, pp 611–616
41.
Zurück zum Zitat Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings on evolutionary computation IEEE world congress on computational intelligence, pp 69–73 Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings on evolutionary computation IEEE world congress on computational intelligence, pp 69–73
42.
Zurück zum Zitat Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th IEEE international symposium on micro machine and human science (MHS’95), Nagoya, Japan, pp 39–43 Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the 6th IEEE international symposium on micro machine and human science (MHS’95), Nagoya, Japan, pp 39–43
43.
Zurück zum Zitat Chen D, Zhao C, Zhang H (2011) An improved cooperative particle swarm optimization and its application. Neural Comput Appl 20:171–182CrossRef Chen D, Zhao C, Zhang H (2011) An improved cooperative particle swarm optimization and its application. Neural Comput Appl 20:171–182CrossRef
44.
Zurück zum Zitat Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174CrossRef Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174CrossRef
45.
Zurück zum Zitat Yang XS, Deb S (2009) Cuckoo search via L´evy flights. In: Proceedings of world congress on nature & biologically inspired computing (NaBIC 2009). IEEE Publications USA, pp 210–214 Yang XS, Deb S (2009) Cuckoo search via L´evy flights. In: Proceedings of world congress on nature & biologically inspired computing (NaBIC 2009). IEEE Publications USA, pp 210–214
46.
Zurück zum Zitat Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Num Opt 1(4):330–343MATH Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Num Opt 1(4):330–343MATH
48.
Zurück zum Zitat Yang XS (2009) Firefly algorithms for multimodal optimization. Proceedings of the 5th symposium on stochastic algorithms foundations and applications. Lect Notes Comput Sci 5792:169–178CrossRef Yang XS (2009) Firefly algorithms for multimodal optimization. Proceedings of the 5th symposium on stochastic algorithms foundations and applications. Lect Notes Comput Sci 5792:169–178CrossRef
49.
Zurück zum Zitat Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67CrossRef Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67CrossRef
50.
Zurück zum Zitat Gazi V, Passino KM (2010) Swarm stability and optimization. Springer, New York, pp 233–249MATH Gazi V, Passino KM (2010) Swarm stability and optimization. Springer, New York, pp 233–249MATH
51.
Zurück zum Zitat Brownlee J (2011) Clever algorithms: nature inspired programming recipes, pp 257–264 Brownlee J (2011) Clever algorithms: nature inspired programming recipes, pp 257–264
52.
Zurück zum Zitat Atasagun Y, Kara Y (2014) Bacterial foraging optimization algorithm for assembly line balancing. Neural Comput Appl 25:237–250CrossRef Atasagun Y, Kara Y (2014) Bacterial foraging optimization algorithm for assembly line balancing. Neural Comput Appl 25:237–250CrossRef
53.
Zurück zum Zitat Coelho LS, Silveira CC, Sierakowski CA, Alotto P (2010) Improved bacterial foraging strategy applied to TEAM workshop benchmark problem. IEEE Trans Magn 46(8):2903–2906CrossRef Coelho LS, Silveira CC, Sierakowski CA, Alotto P (2010) Improved bacterial foraging strategy applied to TEAM workshop benchmark problem. IEEE Trans Magn 46(8):2903–2906CrossRef
54.
Zurück zum Zitat Woodward DE, Tyson R, Myerscough MR, Murray JD, Budrene EO, Berg HC (1995) Spatio-temporal patterns generated by Salmonella typhimurium. Biophys J 68:2181–2189CrossRef Woodward DE, Tyson R, Myerscough MR, Murray JD, Budrene EO, Berg HC (1995) Spatio-temporal patterns generated by Salmonella typhimurium. Biophys J 68:2181–2189CrossRef
55.
Zurück zum Zitat Das S, Dasgupta S, Biswas A, Abraham A (2009) On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm. IEEE Trans Syst Man Cybern 39(3):670–679CrossRef Das S, Dasgupta S, Biswas A, Abraham A (2009) On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm. IEEE Trans Syst Man Cybern 39(3):670–679CrossRef
56.
Zurück zum Zitat Okaeme NA, Zanchetta P (2013) Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives. IEEE Trans Ind Informat 9(2):668–678CrossRef Okaeme NA, Zanchetta P (2013) Hybrid bacterial foraging optimization strategy for automated experimental control design in electrical drives. IEEE Trans Ind Informat 9(2):668–678CrossRef
57.
Zurück zum Zitat Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941CrossRef Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941CrossRef
58.
59.
Zurück zum Zitat Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701CrossRefMATH Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701CrossRefMATH
62.
Zurück zum Zitat Scheffé H (1999) The analysis of variance. Wiley, New York. ISBN 0-471-34505-9 Scheffé H (1999) The analysis of variance. Wiley, New York. ISBN 0-471-34505-9
63.
Zurück zum Zitat Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze
64.
Zurück zum Zitat Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70MathSciNetMATH Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70MathSciNetMATH
Metadaten
Titel
Performance evaluation of nature-inspired algorithms for the design of bored pile foundation by artificial neural networks
verfasst von
Gurdeepak Singh
B. S. Walia
Publikationsdatum
20.05.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe Sonderheft 1/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2345-1

Weitere Artikel der Sonderheft 1/2017

Neural Computing and Applications 1/2017 Zur Ausgabe