Skip to main content
Log in

A changing forgetting factor RLS for online identification of nonlinear systems based on ELM–Hammerstein model

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, an online identification method is proposed for nonlinear system identification based on extreme learning machine (ELM)–Hammerstein model. The ELM–Hammerstein model comprises an ELM neural network followed by a linear dynamic subsystem. This model is linear in parameters and nonlinear in the input. To speed up the convergence and meanwhile improve identification accuracy, a changing forgetting factor recursive least squares (CFF-RLS) method is proposed as online learning algorithm. The algorithm can identify the parameters of linear dynamic subsystem and the weights of ELM neural network simultaneously. Simulation results verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abonyi J, Babuška R, Botto MA, Szeifert F, Nagy L (2000) Identification and control of nonlinear systems using fuzzy Hammerstein models. Ind Eng Chem Res 39(11):4302–4314

    Article  Google Scholar 

  2. Bai EW (2004) Decoupling the linear and nonlinear parts in Hammerstein model identification. Automatica 40(4):671–676

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai EW, Fu M (2002) A blind approach to Hammerstein model identification. IEEE Trans Signal Process 50(7):1610–1619

    Article  Google Scholar 

  4. Cervantes AL, Agamennoni OE, Figueroa JL (2003) A nonlinear model predictive control system based on Wiener piecewise linear models. J Process Control 13(7):655–666

    Article  Google Scholar 

  5. Chaudhary NI, Raja MAZ, Khan JA, Aslam MS (2013) Identification of input nonlinear control autoregressive systems using fractional signal processing approach. Sci World J 2013:13, Art ID 467276. doi:10.1155/2013/467276

    Article  Google Scholar 

  6. Farmer JD (1982) Chaotic attractors of an infinite-dimensional dynamical system. Phys D Nonlinear Phenom 4(3):366–393

    Article  MathSciNet  MATH  Google Scholar 

  7. Fink A, Nelles O (2001) Nonlinear internal model control based on local linear neural networks. In: IEEE international conference on systems, man, and cybernetics, pp 117–122

  8. Giri F, Chaoui FZ, Rochdi Y (2011) Parameter identification of a class of Hammerstein plants. Automatica 37(5):749–756

    Article  MathSciNet  MATH  Google Scholar 

  9. Greblicki W, Pawlak M (1991) Nonparametric identification of a cascade nonlinear time series system. Signal Process 22(1):61–75

    Article  MATH  Google Scholar 

  10. Hong X, Chen S (2012) The system identification and control of Hammerstein system using non-uniform rational B-spline neural network and particle swarm optimization. Neurocomputing 82:216–223

    Article  Google Scholar 

  11. Huang GB (2015) What are extreme learning machines? Filling the gap between frank rosenblatt’s dream and john von neumann’s puzzle. Cognit Comput 7:263–278

    Article  Google Scholar 

  12. Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48

    Article  MATH  Google Scholar 

  13. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42(2):513–529

    Article  Google Scholar 

  14. Huang GB, Zhu Q, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Neural networks, 2004. Proceedings. 2004 IEEE international joint conference on, vol 2, pp 985–990

  15. Jia L, Chiu MS, Ge SS (2005) A noniterative neuro-fuzzy based identification method for Hammerstein processes. J Process Control 15(7):749–761

    Article  Google Scholar 

  16. Juang CF, Huang RB, Lin YY (2009) A recurrent self-evolving intervatl type-2 fuzzy neural network for dynamic system processing. IEEE Trans Fuzzy Syst 17(5):1092–1105

    Article  Google Scholar 

  17. Krzyźak A (1996) On nonparametric estimation of nonlinear dynamic systems by the Fourier series estimate. Signal Process 52(3):299–321

    Article  MATH  Google Scholar 

  18. Le F, Markovsky I, Freeman CT, Rogers E (2012) Recursive identification of Hammerstein systems with application to electrically stimulated muscle. Control Eng Pract 20(4):386–396

    Article  Google Scholar 

  19. Leung SH, So CF (2005) Gradient-based variable forgetting factor RLS algorithm in time-varying environments. IEEE Trans Signal Process 53(8):3141–3150

    Article  MathSciNet  MATH  Google Scholar 

  20. Li CH, Zhu XJ, Cao GY, Sui S, Hu MR (2008) Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines. J Power Sour 175(1):303–316

    Article  Google Scholar 

  21. Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6):1411–1423

    Article  Google Scholar 

  22. Mirri D, luculano G, Filicori F, Pasini G, Vannini G, Gabriella G (2002) A modified Volterra series approach for nonlinear dynamic systems modeling. IEEE Trans Circ Syst Fund Theor Appl 49(8):1118–1128

    Article  MathSciNet  MATH  Google Scholar 

  23. Narendra KS, Gallman P (1966) An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans Autom Control 11(3):546–550

    Article  Google Scholar 

  24. Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27

    Article  Google Scholar 

  25. Paleologu C, Benesty J, Ciochina S (2008) A robust variable forgetting factor recursive least-squares algorithm for system identification. Signal Process Lett IEEE 15:597–600

    Article  Google Scholar 

  26. Park D, Jun B, Kim J (1991) Fast tracking RLS algorithm using novel variable forgetting factor with unity zone. Electron Lett 27(1):2150–2151

    Article  Google Scholar 

  27. Pawlak M (1991) On the series expansion approach to the identification of Hammerstein systems. IEEE Trans Autom Control 36(6):763–767

    Article  MathSciNet  Google Scholar 

  28. Salimifard M, Jafari M, Dehghani M (2012) Identification of nonlinear MIMO block-oriented systems with moving average noises using gradient based and least squares based iterative algorithms. Neurocomputing 94:22–31

    Article  Google Scholar 

  29. Shi J, Xu X, Dai Y (2011) Identification of Hammerstein LSSVM-ARMA systems and its application in continuous stirred tank rector. Energy Proced 13:5359–5365

    Article  Google Scholar 

  30. Song S, Lim JS, Baek S, Sung KM (2000) Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking. Electron Lett 36(11):988–990

    Article  Google Scholar 

  31. Tang Y, Li Z, Guan X (2014) Identification of nonlinear system using extreme learning machine based Hammerstein model. Commun Nonlinear Sci Numer Simul 19(9):3171–3183

    Article  MathSciNet  Google Scholar 

  32. Tanomaru J, Omatu S (1992) Process control by on-line trained neural controllers. IEEE Trans Ind Electron 39(6):511–521

    Article  Google Scholar 

  33. Togun N, Baysec S, Kara T (2012) Nonlinear modeling and identification of a spark ignition engine torque. Mech Syst Signal Process 26:294–304

    Article  Google Scholar 

  34. Wang JS, Hsu YL (2010) An MDL-based Hammerstein recurrent neural network for control applications. Neurocomputing 74(1–3):315–327

    Article  Google Scholar 

  35. Wang Y, Cao F, Yuan Y (2011) A study on effectiveness of extreme learning machine. Neurocomputing 74(16):2483–2490

    Article  Google Scholar 

  36. Wigren T, Nordsjo AE (1999) Compensation of the RLS algorithm for output nonlinearities. IEEE Trans Autom Control 44(10):1913–1918

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang J, Wang Q (2009) Hammerstein model identification of continuous stirred tank reactor based on least squares support vector machines. In: Control and decision conference, pp 2858–2862

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 61273260, 61471313), Natural Science Foundation of Hebei Province (No. F2014203208), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20121333120010), China Postdoctoral Science Foundation (Nos. 2013M530888, 2014T70229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinggan Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Han, Z., Wang, Y. et al. A changing forgetting factor RLS for online identification of nonlinear systems based on ELM–Hammerstein model. Neural Comput & Applic 28 (Suppl 1), 813–827 (2017). https://doi.org/10.1007/s00521-016-2394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2394-5

Keywords

Navigation