Skip to main content
Erschienen in: Neural Computing and Applications 1/2017

21.06.2016 | Original Article

Stochastic numerical treatment for solving Falkner–Skan equations using feedforward neural networks

verfasst von: Iftikhar Ahmad, Siraj-ul-Islam Ahmad, Muhammad Bilal, Nabeela Anwar

Erschienen in: Neural Computing and Applications | Sonderheft 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, the artificial intelligence techniques have been used for the solution of Falkner–Skan (FS) equations based on neural networks optimized with three methods including active set technique, sequential quadratic programming and genetic algorithms (GA) hybridization. Log-sigmoid activation function is used in artificial neural network architecture. The proposed techniques are applied to a number of cases for Falkner–Skan problems, and results were compared with GA hybrid results in all cases and were found accurate. The level of accuracy is examined through statistical analyses based on a sufficiently large number of independent runs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Falkner VM, Skan SW (1931) Some approximate solutions of the boundary layer equations. Philos Mag 12:865–896CrossRefMATH Falkner VM, Skan SW (1931) Some approximate solutions of the boundary layer equations. Philos Mag 12:865–896CrossRefMATH
2.
Zurück zum Zitat Hartree DR (1937) On an equation occurring in Falkner and Skan’s approximate treatment of the equation of the boundary layer. Proc Camb Phil Soc 33:223–239CrossRefMATH Hartree DR (1937) On an equation occurring in Falkner and Skan’s approximate treatment of the equation of the boundary layer. Proc Camb Phil Soc 33:223–239CrossRefMATH
3.
Zurück zum Zitat Harris SD, Ingham DB, Pop I (2002) Unsteady heat transfer in impulsive Falkner–Skan flows: constant wall temperature case. Eur J Mech B 21:447–468MathSciNetCrossRefMATH Harris SD, Ingham DB, Pop I (2002) Unsteady heat transfer in impulsive Falkner–Skan flows: constant wall temperature case. Eur J Mech B 21:447–468MathSciNetCrossRefMATH
4.
Zurück zum Zitat Agarwal RP, O’Regan D (2003) Infinite interval problems arising in nonlinear mechanics and non-Newtonian flows. Int J Non Linear Mech 38:1369–1376CrossRefMATH Agarwal RP, O’Regan D (2003) Infinite interval problems arising in nonlinear mechanics and non-Newtonian flows. Int J Non Linear Mech 38:1369–1376CrossRefMATH
5.
Zurück zum Zitat Pantokratoras A (2006) The Falkner–Skan flow with constant wall temperature and variable viscosity. Int J Therm Sci 45:378–389CrossRef Pantokratoras A (2006) The Falkner–Skan flow with constant wall temperature and variable viscosity. Int J Therm Sci 45:378–389CrossRef
7.
Zurück zum Zitat Olagunju DO (2006) A self-similar solution for forced convection boundary layer flow of a FENE-P fluid. Appl Math Lett 19(5):432–436MathSciNetCrossRefMATH Olagunju DO (2006) A self-similar solution for forced convection boundary layer flow of a FENE-P fluid. Appl Math Lett 19(5):432–436MathSciNetCrossRefMATH
8.
Zurück zum Zitat Asaithambi A (2004) Numerical solution of the Falkner–Skan equation using piecewise linear functions. Appl Math Comput 159:267–273MathSciNetMATH Asaithambi A (2004) Numerical solution of the Falkner–Skan equation using piecewise linear functions. Appl Math Comput 159:267–273MathSciNetMATH
9.
Zurück zum Zitat Bhatnagar RK, Gupta G, Rajagopal KR (1995) Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. Int J Non Linear Mech 30(3):391–405CrossRefMATH Bhatnagar RK, Gupta G, Rajagopal KR (1995) Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. Int J Non Linear Mech 30(3):391–405CrossRefMATH
10.
Zurück zum Zitat Magyari E, Keller B (2000) Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur J Mech B Fluids 19:109–122MathSciNetCrossRefMATH Magyari E, Keller B (2000) Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls. Eur J Mech B Fluids 19:109–122MathSciNetCrossRefMATH
11.
Zurück zum Zitat Massoudi M (2003) Boundary layer flow of a second grade fluid with variable heat flux at the wall. Appl Math Comput 143:201–212MathSciNetMATH Massoudi M (2003) Boundary layer flow of a second grade fluid with variable heat flux at the wall. Appl Math Comput 143:201–212MathSciNetMATH
13.
Zurück zum Zitat Rosenhead L (1963) Laminar boundary layers. Clarendon Press, Oxford, EnglandMATH Rosenhead L (1963) Laminar boundary layers. Clarendon Press, Oxford, EnglandMATH
14.
Zurück zum Zitat Tam KK (1970) A note on existance of a solution of Falkner-Skan equation. Can Math Bull 13(1):125CrossRefMATH Tam KK (1970) A note on existance of a solution of Falkner-Skan equation. Can Math Bull 13(1):125CrossRefMATH
15.
16.
Zurück zum Zitat Yang GC (2008) New results of Falkner-Skan equation arising in boundary layer theory. Appl Math Comput 202(1):406–412MathSciNetMATH Yang GC (2008) New results of Falkner-Skan equation arising in boundary layer theory. Appl Math Comput 202(1):406–412MathSciNetMATH
17.
Zurück zum Zitat Ahmad I, Mukhtar A (2015) Stochastic approach for the solution of multi-pantograph differential equation arising in cell-growth model. Appl Math Comput 261:360MathSciNet Ahmad I, Mukhtar A (2015) Stochastic approach for the solution of multi-pantograph differential equation arising in cell-growth model. Appl Math Comput 261:360MathSciNet
18.
Zurück zum Zitat Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415MathSciNetCrossRefMATH Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415MathSciNetCrossRefMATH
19.
Zurück zum Zitat Abo-Hammour Z, Abu Arqub O, Momani S, Shawagfeh N (2014) Optimization solution of Troesch’s and Bratu’s problems of ordinary type using novel continuous genetic algorithm. Discrete Dyn Nat Soc. Article ID 401696. doi:10.1155/2014/401696 Abo-Hammour Z, Abu Arqub O, Momani S, Shawagfeh N (2014) Optimization solution of Troesch’s and Bratu’s problems of ordinary type using novel continuous genetic algorithm. Discrete Dyn Nat Soc. Article ID 401696. doi:10.​1155/​2014/​401696
20.
Zurück zum Zitat Raja MAZ, Khan JA, Siddiqui AM, Behloul D, Haroon T, Samar R (2015) Exactly satisfying initial conditions neural network models for numerical treatment of first Painleve equation. Appl Soft Comput 26:244–256CrossRef Raja MAZ, Khan JA, Siddiqui AM, Behloul D, Haroon T, Samar R (2015) Exactly satisfying initial conditions neural network models for numerical treatment of first Painleve equation. Appl Soft Comput 26:244–256CrossRef
21.
Zurück zum Zitat Raja MAZ, Samar R, Haroon T, Shah SM (2015) Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery–Hamel problem. Appl Math Mech 36(12):1611–1638. doi:10.1007/s10483-015-2000-6 MathSciNetCrossRef Raja MAZ, Samar R, Haroon T, Shah SM (2015) Unsupervised neural network model optimized with evolutionary computations for solving variants of nonlinear MHD Jeffery–Hamel problem. Appl Math Mech 36(12):1611–1638. doi:10.​1007/​s10483-015-2000-6 MathSciNetCrossRef
22.
Zurück zum Zitat Arqub OA, Mohammed AS, Momani S, Hayat T (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. doi:10.1007/s00500-015-1707-4 MATH Arqub OA, Mohammed AS, Momani S, Hayat T (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. doi:10.​1007/​s00500-015-1707-4 MATH
23.
Zurück zum Zitat Arqub OA (2015) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl. doi:10.1007/s00521-015-2110-x Arqub OA (2015) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl. doi:10.​1007/​s00521-015-2110-x
24.
Zurück zum Zitat Judice JJ, Sherali HD, Ribeiro IM, Faustino AM (2007) Complementarity active-set algorithm for mathematical programming problems with equilibrium constraints. J Optim Theory Appl 134(3):467–481MathSciNetCrossRefMATH Judice JJ, Sherali HD, Ribeiro IM, Faustino AM (2007) Complementarity active-set algorithm for mathematical programming problems with equilibrium constraints. J Optim Theory Appl 134(3):467–481MathSciNetCrossRefMATH
25.
26.
Zurück zum Zitat Sloan SW (2005) A steepest edge active set algorithm for solving sparse linear programming problems. Int J Numer Methods Eng 26(12):2671–2685MathSciNetCrossRefMATH Sloan SW (2005) A steepest edge active set algorithm for solving sparse linear programming problems. Int J Numer Methods Eng 26(12):2671–2685MathSciNetCrossRefMATH
27.
Zurück zum Zitat Khan JA, Raja MAZ (2013) Artificial intelligence based solver for governing model of radioactivity cooling, self-gravitating clouds and clusters of galaxies. Res J Appl Sci Eng Technol 6(3):450–456 Khan JA, Raja MAZ (2013) Artificial intelligence based solver for governing model of radioactivity cooling, self-gravitating clouds and clusters of galaxies. Res J Appl Sci Eng Technol 6(3):450–456
28.
Zurück zum Zitat Zahoor Raja MA, Khan JA, Qureshi IM (2010) A new stochastic approach for solution of Riccati differential equation of fractional order. Ann Math Artif Intell 60:229–250MathSciNetCrossRefMATH Zahoor Raja MA, Khan JA, Qureshi IM (2010) A new stochastic approach for solution of Riccati differential equation of fractional order. Ann Math Artif Intell 60:229–250MathSciNetCrossRefMATH
29.
Zurück zum Zitat Zahoor Raja MA, Samar R (2014) Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing 124:178–193CrossRef Zahoor Raja MA, Samar R (2014) Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing 124:178–193CrossRef
30.
Zurück zum Zitat Saini I, Singh P, Malik V (2013) Genetic algorithem approach for solving the Falkner–Skan equation. World Acad Sci Eng Technol IJC Inf Sci Eng 7:3 Saini I, Singh P, Malik V (2013) Genetic algorithem approach for solving the Falkner–Skan equation. World Acad Sci Eng Technol IJC Inf Sci Eng 7:3
31.
Zurück zum Zitat Hartree DR (1921) On an equation occurring in Falkner and Skan’s approximate treatment of the equations boundary layer. Proc Camb Philos Soc 33:223–239CrossRefMATH Hartree DR (1921) On an equation occurring in Falkner and Skan’s approximate treatment of the equations boundary layer. Proc Camb Philos Soc 33:223–239CrossRefMATH
32.
Zurück zum Zitat Asaithambi A (1998) A finite-difference method for the solution of the Falkner–Skan equation. Appl Math Comput 92:135–141MathSciNetCrossRefMATH Asaithambi A (1998) A finite-difference method for the solution of the Falkner–Skan equation. Appl Math Comput 92:135–141MathSciNetCrossRefMATH
33.
Zurück zum Zitat Asaithambi NS (1997) A numerical method for the solution of the Falkner–Skan equation. Appl Math Comput 81:259–264MathSciNetMATH Asaithambi NS (1997) A numerical method for the solution of the Falkner–Skan equation. Appl Math Comput 81:259–264MathSciNetMATH
34.
Zurück zum Zitat Salama AA (2004) Higher-order method for solving free boundary-value problems. Numer Heat Transf Part B Fundam 45:385–394CrossRef Salama AA (2004) Higher-order method for solving free boundary-value problems. Numer Heat Transf Part B Fundam 45:385–394CrossRef
35.
Zurück zum Zitat Zhang J, Chen B (2009) An iterative method for solving the Falkner–Skan equation. Appl Math Comput 210:215–222MathSciNetMATH Zhang J, Chen B (2009) An iterative method for solving the Falkner–Skan equation. Appl Math Comput 210:215–222MathSciNetMATH
36.
Zurück zum Zitat Vera MR, Valencia A (2010) Solutions of Falkner–Skan equation with heat transfer by Fourier series. Int Commun Heat Mass Transf 37:761–765CrossRef Vera MR, Valencia A (2010) Solutions of Falkner–Skan equation with heat transfer by Fourier series. Int Commun Heat Mass Transf 37:761–765CrossRef
Metadaten
Titel
Stochastic numerical treatment for solving Falkner–Skan equations using feedforward neural networks
verfasst von
Iftikhar Ahmad
Siraj-ul-Islam Ahmad
Muhammad Bilal
Nabeela Anwar
Publikationsdatum
21.06.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe Sonderheft 1/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2427-0

Weitere Artikel der Sonderheft 1/2017

Neural Computing and Applications 1/2017 Zur Ausgabe