Skip to main content
Erschienen in: Neural Computing and Applications 10/2018

20.09.2016 | Original Article

Impact of inclined Lorentz forces on tangent hyperbolic nanofluid flow with zero normal flux of nanoparticles at the stretching sheet

verfasst von: Besthapu Prabhakar, Shankar Bandari, Rizwan Ul Haq

Erschienen in: Neural Computing and Applications | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This framework is devoted to analyze the tangent hyperbolic fluid in the presence of nanoparticles. In order to disperse the nanoparticle from the surface of sheet, condition of zero normal flux of nanoparticles is introduced at the surface. Inclined magnetic field is applied with an aligned angle \(\gamma\) at the surface of the sheet. Moreover, consideration of nanoparticles which are passively controlled at the surface is physically more realistic condition. The system of partial differential equations generated for tangent hyperbolic nanofluid are modeled and then converted into the system of nonlinear ordinary differential equations by employing suitable similarity transformations. Obtained systems of ordinary differential equations along with the condition of zero normal flux are successfully solved numerically by Runge–Kutta fourth-order method with shooting technique. The effects of various emerging parameters on velocity, temperature and concentration profiles are discussed in detail and presented graphically. Variation of skin friction coefficient and local Nusselt number are also oriented to analyze the variation of nanofluid at the surface. Considerable effects are found on velocity, temperature and concentration with the variable values of Weissenberg number \(We\) and inclination of angle \(\gamma\). It is finally concluded that increase in the Weissenberg number and power law index reduce the velocity profile; however, thermophoresis parameter shows the dominant effects on temperature and concentration profile. Significant effects on velocity, temperature and concentration profiles are also determined for both suction and injection cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pop I, Ingham DB (2001) Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media. Pergamon, Amsterdam Pop I, Ingham DB (2001) Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media. Pergamon, Amsterdam
2.
Zurück zum Zitat Nadeem S, Akram S (2009) Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel. ZNA 64a:559–567 Nadeem S, Akram S (2009) Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel. ZNA 64a:559–567
3.
Zurück zum Zitat Friedman AJ, Dyke SJ, Phillips BM (2013) Over-driven control for large-scale MR dampers. Smart Mater Struct 22(045001):15 Friedman AJ, Dyke SJ, Phillips BM (2013) Over-driven control for large-scale MR dampers. Smart Mater Struct 22(045001):15
4.
Zurück zum Zitat Nadeem S, Maraj EN (2013) The mathematical analysis for peristaltic flow of hyperbolic tangent hyperbolic fluid in a curved channel. Commun Theor Phys 59:729–736MathSciNetCrossRef Nadeem S, Maraj EN (2013) The mathematical analysis for peristaltic flow of hyperbolic tangent hyperbolic fluid in a curved channel. Commun Theor Phys 59:729–736MathSciNetCrossRef
5.
Zurück zum Zitat Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Numerical solutions of Magneto-hydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J Phys 87:1121–1124CrossRef Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Numerical solutions of Magneto-hydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J Phys 87:1121–1124CrossRef
6.
Zurück zum Zitat Naseer M, Malik MY, Nadeem S, Rehman A (2014) The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder. Alex Eng J 53:747–750CrossRef Naseer M, Malik MY, Nadeem S, Rehman A (2014) The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder. Alex Eng J 53:747–750CrossRef
7.
Zurück zum Zitat Akbar NS (2014) Peristaltic flow of Tangent Hyperbolic fluid with convective boundary condition. Eur Phys J Plus 129:214CrossRef Akbar NS (2014) Peristaltic flow of Tangent Hyperbolic fluid with convective boundary condition. Eur Phys J Plus 129:214CrossRef
8.
Zurück zum Zitat Akram S, Nadeem S (2014) Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field. J Magn Magn Mater 358:183–191CrossRef Akram S, Nadeem S (2014) Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field. J Magn Magn Mater 358:183–191CrossRef
9.
Zurück zum Zitat Shahzad A, Ali R (2012) Approximate analytic solution for magneto-hydrodynamic flow of a non-Newtonian fluid over a vertical stretching sheet. Can J Appl Sci 2:202–215 Shahzad A, Ali R (2012) Approximate analytic solution for magneto-hydrodynamic flow of a non-Newtonian fluid over a vertical stretching sheet. Can J Appl Sci 2:202–215
10.
Zurück zum Zitat Ahmed J, Shahzad A, Khan M, Ali R (2015) A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet. AIP Adv 5:117117CrossRef Ahmed J, Shahzad A, Khan M, Ali R (2015) A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet. AIP Adv 5:117117CrossRef
11.
Zurück zum Zitat Shahzad A, Ali R (2013) MHD flow of a non-Newtonian Power law fluid over a vertical stretching sheet with the convective boundary condition. Walailak J Sci Technol (WJST) 10:43–56 Shahzad A, Ali R (2013) MHD flow of a non-Newtonian Power law fluid over a vertical stretching sheet with the convective boundary condition. Walailak J Sci Technol (WJST) 10:43–56
12.
Zurück zum Zitat Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticle, development and applications of non-Newtonian flow. ASME FED-231/MD6699–105 Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticle, development and applications of non-Newtonian flow. ASME FED-231/MD6699–105
13.
Zurück zum Zitat Buongionro J (2006) Convective transport in nanofluids. J Heat Transf ASME 128:240–250CrossRef Buongionro J (2006) Convective transport in nanofluids. J Heat Transf ASME 128:240–250CrossRef
14.
Zurück zum Zitat Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448CrossRef Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448CrossRef
15.
Zurück zum Zitat Ferrouillat S, Bontemps A, Poncelet O, Soriano O, Gruss JA (2011) Influence of nanoparticle shape factor on convective heat transfer of water-based ZnO nanofluids. Performance evaluation criterion. Int J Mech Ind Eng 1:1–13 Ferrouillat S, Bontemps A, Poncelet O, Soriano O, Gruss JA (2011) Influence of nanoparticle shape factor on convective heat transfer of water-based ZnO nanofluids. Performance evaluation criterion. Int J Mech Ind Eng 1:1–13
16.
Zurück zum Zitat Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRef Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRef
17.
Zurück zum Zitat Khan WA, Khan ZH, Haq RU (2015) Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux. Eur Phys Plus 130:86CrossRef Khan WA, Khan ZH, Haq RU (2015) Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux. Eur Phys Plus 130:86CrossRef
18.
Zurück zum Zitat Haq RU, Nadeem S, Khan ZH, Noor NFM (2015) MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Phys E 73:45–53CrossRef Haq RU, Nadeem S, Khan ZH, Noor NFM (2015) MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Phys E 73:45–53CrossRef
19.
Zurück zum Zitat Hussain ST, Haq RU, Khan ZH, Nadeem S (2016) Water driven flow of carbon nanofluid nanotubes in a rotating channel. J Mol Liquid 214:136–144CrossRef Hussain ST, Haq RU, Khan ZH, Nadeem S (2016) Water driven flow of carbon nanofluid nanotubes in a rotating channel. J Mol Liquid 214:136–144CrossRef
20.
Zurück zum Zitat Rehaman S, Ul Haq R, Khan ZH, Lee C (2016) Entropy generation analysis of non-Newtonian nanofluid with zero normal flux of nanoparticles at the stretching surface. J Taiwan Inst Chem Eng 63:226–235CrossRef Rehaman S, Ul Haq R, Khan ZH, Lee C (2016) Entropy generation analysis of non-Newtonian nanofluid with zero normal flux of nanoparticles at the stretching surface. J Taiwan Inst Chem Eng 63:226–235CrossRef
21.
Zurück zum Zitat Kuznetsov AV, Nield DA (2010) Natural convective boundary layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247CrossRef Kuznetsov AV, Nield DA (2010) Natural convective boundary layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247CrossRef
22.
Zurück zum Zitat Khan WA, Pop I (2010) Boundary layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483CrossRefMATH Khan WA, Pop I (2010) Boundary layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483CrossRefMATH
23.
Zurück zum Zitat Bachok N, Ishak A, Pop I (2010) Boundary layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci 49:1663–1668CrossRef Bachok N, Ishak A, Pop I (2010) Boundary layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci 49:1663–1668CrossRef
24.
Zurück zum Zitat Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with convective boundary condition. Int J Therm Sci 50:1326–1332CrossRef Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with convective boundary condition. Int J Therm Sci 50:1326–1332CrossRef
25.
Zurück zum Zitat Ibrahim W, Shanker B (2012) Boundary layer flow and heat transfer of nanofluid over a vertical plate with convective surface boundary condition. J Fluids Eng 134:081203CrossRef Ibrahim W, Shanker B (2012) Boundary layer flow and heat transfer of nanofluid over a vertical plate with convective surface boundary condition. J Fluids Eng 134:081203CrossRef
27.
Zurück zum Zitat Ibrahim W, Ul Haq R (2015) Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. J Braz Soc Mech Sci Eng. doi:10.1007/s40430-015-0347-z Ibrahim W, Ul Haq R (2015) Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. J Braz Soc Mech Sci Eng. doi:10.​1007/​s40430-015-0347-z
28.
Zurück zum Zitat Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Radiation effects on MHD stagnation point flow of nanofluid towards a stretching surface with convective boundary condition. Chin J Aeronaut 26:1389–1397CrossRef Akbar NS, Nadeem S, Haq RU, Khan ZH (2013) Radiation effects on MHD stagnation point flow of nanofluid towards a stretching surface with convective boundary condition. Chin J Aeronaut 26:1389–1397CrossRef
29.
Zurück zum Zitat Nadeem S, Haq R (2013) Effect of thermal radiation for magneto hydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci 11:32–40CrossRef Nadeem S, Haq R (2013) Effect of thermal radiation for magneto hydrodynamic boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci 11:32–40CrossRef
31.
Zurück zum Zitat Kuznetsov AV, Nield DA (2014) Natural convective boundary layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129CrossRef Kuznetsov AV, Nield DA (2014) Natural convective boundary layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129CrossRef
32.
Zurück zum Zitat Khan ZH, Khan WA, Pop I (2013) Triple diffusive free convection along a horizontal Plate in porous media saturated by nanofluid with convective boundary condition. Int J Heat Mass Transf 66:603–612CrossRef Khan ZH, Khan WA, Pop I (2013) Triple diffusive free convection along a horizontal Plate in porous media saturated by nanofluid with convective boundary condition. Int J Heat Mass Transf 66:603–612CrossRef
33.
Zurück zum Zitat Ibrahim W, Haq RU (2015) Magneto hydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. J Braz Soc Mech Sci Eng 38:1155–1164CrossRef Ibrahim W, Haq RU (2015) Magneto hydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. J Braz Soc Mech Sci Eng 38:1155–1164CrossRef
34.
Zurück zum Zitat Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys E 65:17–23CrossRef Haq RU, Nadeem S, Khan ZH, Akbar NS (2015) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys E 65:17–23CrossRef
36.
Zurück zum Zitat Haq RU, Nadeem S, Khan ZH, Akabr NS (2014) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys E 65:17–23CrossRef Haq RU, Nadeem S, Khan ZH, Akabr NS (2014) Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys E 65:17–23CrossRef
37.
Zurück zum Zitat Haq RU, Nadeem S, Akbar NS, Khan ZH (2015) Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans Nanotechnol 14(1):42–50CrossRef Haq RU, Nadeem S, Akbar NS, Khan ZH (2015) Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans Nanotechnol 14(1):42–50CrossRef
38.
Zurück zum Zitat Nadeem S, Haq RU, Akbar NS, Lee C, Khan ZH (2013) Numerical study of boundary layer flow and heat transfer of Oldroyd-B nanofluid towards a stretching sheet. PLoS ONE 8(8):e69811CrossRef Nadeem S, Haq RU, Akbar NS, Lee C, Khan ZH (2013) Numerical study of boundary layer flow and heat transfer of Oldroyd-B nanofluid towards a stretching sheet. PLoS ONE 8(8):e69811CrossRef
39.
Zurück zum Zitat Saleem S, Nadeem S, Haq RU (2014) Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone. Eur Phys J Plus 129:213CrossRef Saleem S, Nadeem S, Haq RU (2014) Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone. Eur Phys J Plus 129:213CrossRef
40.
Zurück zum Zitat Haq RU, Nadeem S, Khan ZH, Noor NFM (2015) Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B 457(15):40–47CrossRef Haq RU, Nadeem S, Khan ZH, Noor NFM (2015) Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B 457(15):40–47CrossRef
Metadaten
Titel
Impact of inclined Lorentz forces on tangent hyperbolic nanofluid flow with zero normal flux of nanoparticles at the stretching sheet
verfasst von
Besthapu Prabhakar
Shankar Bandari
Rizwan Ul Haq
Publikationsdatum
20.09.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 10/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2601-4

Weitere Artikel der Ausgabe 10/2018

Neural Computing and Applications 10/2018 Zur Ausgabe