Skip to main content
Log in

Multi-level image thresholding using Otsu and chaotic bat algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Multi-level thresholding is a helpful tool for several image segmentation applications. Evaluating the optimal thresholds can be applied using a widely adopted extensive scheme called Otsu’s thresholding. In the current work, bi-level and multi-level threshold procedures are proposed based on their histogram using Otsu’s between-class variance and a novel chaotic bat algorithm (CBA). Maximization of between-class variance function in Otsu technique is used as the objective function to obtain the optimum thresholds for the considered grayscale images. The proposed procedure is applied on a standard test images set of sizes (512 × 512) and (481 × 321). Further, the proposed approach performance is compared with heuristic procedures, such as particle swarm optimization, bacterial foraging optimization, firefly algorithm and bat algorithm. The evaluation assessment between the proposed and existing algorithms is conceded using evaluation metrics, namely root-mean-square error, peak signal to noise ratio, structural similarity index, objective function, and CPU time/iteration number of the optimization-based search. The results established that the proposed CBA provided better outcome for maximum number cases compared to its alternatives. Therefore, it can be applied in complex image processing such as automatic target recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ghosh SK (2012) Digital image processing. Narosa Publishing House Pvt. Ltd., New Delhi

    Google Scholar 

  2. Ghamisi P, Couceiro MS, Martins FML, Benediktsson JA (2014) Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans Geosci Remote Sens 52(5):2382–2394

    Article  Google Scholar 

  3. Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst Appl 42(3):1573–1601

    Article  Google Scholar 

  4. Manickavasagam K, Sutha S, Kamalanand K (2014) An automated system based on 2d empirical mode decomposition and k-means clustering for classification of Plasmodium species in thin blood smear images. BMC Infect Dis 14(Suppl 3):P13. doi:10.1186/1471-2334-14-S3-P13

    Article  Google Scholar 

  5. Manickavasagam K, Sutha S, Kamalanand K (2014) development of systems for classification of different plasmodium species in thin blood smear microscopic images. J Adv Microsc Res 9(2):86–92

    Article  Google Scholar 

  6. Kalyani M, Satapathy SC, Rao KR (2012) Artificial bee colony based image clustering, In: Proceedings of the international conference on information systems design and intelligent applications 2012 (INDIA 2012), Advances in Intelligent and Soft Computing, vol. 132, pp 29–37

  7. Horng Ming-Huwi (2011) Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst Appl 38(11):13785–13791

    Google Scholar 

  8. Sathya PD, Kayalvizhi R (2010) Optimum multilevel image thresholding based on tsallis entropy method with bacterial foraging algorithm. IJCSI Int J Comput Sci Issues 7(5):336–343

    Google Scholar 

  9. Dey N, Roy AB, Pal M, Das A (2012) FCM Based blood vessel segmentation method for retinal images, Int J Comput Sci Netw (IJCSN) 1(3) (ISSN 2277–5420)

  10. Roy P, Goswami S, Chakraborty S, Azar AT, Dey N (2014) Image segmentation using rough set theory: a review. Int J Rough Sets Data Analy (IJRSDA) 1(2):62–74

    Article  Google Scholar 

  11. Pal G, Acharjee S, Rudrapaul D, Ashour AS, Dey N (2015) Video segmentation using minimum ratio similarity measurement. Int J Image Min 1(1):87–110

  12. Samanta S, Dey N, Das P, Acharjee S, Chaudhuri SS, (2012) Multilevel threshold based gray scale image segmentation using cuckoo search, In: International conference on emerging trends in electrical, communication and information technologies -ICECIT, December 12–23

  13. Samanta S, Acharjee S, Mukherjee A, Das D, Dey N (2013) Ant Weight Lifting Algorithm for Image Segmentation, In: 2013 IEEE international conference on computational intelligence and computing research (ICCIC), Madurai, December 26–28

  14. Ghamisi P, Couceiro MS, Benediktsson JA, Ferreira NMF (2012) An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst Appl 39(16):12407–12417

    Article  Google Scholar 

  15. Lee SU, Chung SY, Park RH (1990) A comparative performance study techniques for segmentation. Comput Vision Gr Image Process 52(2):171–190

    Article  Google Scholar 

  16. Sezgin M, Sankar B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–165

    Article  Google Scholar 

  17. Pei JH, Xie WX (1999) Adaptive multi thresholds images segmentation based on fuzzy restrained histogram fcm clustering (in Chinese). Acta Electron Sin 27(10):38–42

    Google Scholar 

  18. Yen JC, Chang FJ, Chang S (1995) A new criterion for automatic multilevel thresholding. IEEE Trans Image Process 4(3):370–378

    Article  Google Scholar 

  19. Histogram TUTD, Principle FE (2000) xmin; if x < xmin xmax; if x > xmax x; otherwise. IEEE Trans Image Process 9(4):733

    Google Scholar 

  20. Manikantan K, Arun BV, Yaradonic DKS (2012) Optimal multilevel thresholds based on tsallis entropy method using golden ratio particle swarm optimization for improved image segmentation. Procedia Eng 30:364–371

    Article  Google Scholar 

  21. Akay Bahriye (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13(6):3066–3091

    Article  Google Scholar 

  22. Rajinikanth V, Raja NSM, Latha K (2014) Optimal multilevel image thresholding: an analysis with PSO and BFO algorithms. Aust J Basic Appl Sci 8(9):443–454

    Google Scholar 

  23. Sathya PD, Kayalvizhi R (2011) Modified bacterial foraging algorithm based multilevel thresholding for image segmentation. Eng Appl Artif Intell 24:595–615

    Article  Google Scholar 

  24. Sathya PD, Kayalvizhi R (2011) Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst Appl 38:15549–15564

    Article  Google Scholar 

  25. Raja NSM, RajinikanthV, Latha K (2014) Otsu based optimal multilevel image thresholding using firefly algorithm, Model Simul Eng, vol. 2014, Article ID 794574, 17 pages

  26. Sarkar S, Das S (2013) Multilevel image thresholding based on 2D histogram and maximum tsallis entropy–a differential evolution approach. IEEE Trans Image Process 22(12):4788–4797

    Article  MathSciNet  MATH  Google Scholar 

  27. Charansiriphaisan K, Chiewchanwattana S, Sunat K (2014) A global multilevel thresholding using differential evolution approach, Math Probl Eng, vol. 2014, Article ID 974024, 23 pages

  28. Abhinaya B, Raja NSM (2015) Solving multi-level image thresholding problem—an analysis with cuckoo search algorithm. Inf Syst Design Intell Appl Adv Intell Syst Comput 339:177–186

    Google Scholar 

  29. Agrawal S, Panda R, Bhuyan S, Panigrahi BK (2013) Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol Comput 11:16–30

    Article  Google Scholar 

  30. Rajinikanth V, Aashiha JP, Atchaya A (2014) Gray-level histogram based multilevel threshold selection with bat algorithm. Int J Comput Appl 93(16):1–8

    Google Scholar 

  31. Rajinikanth V, Couceiro MS (2015) Optimal multilevel image threshold selection using a novel objective function. Inf Syst Design Intell Appl Adv Intell Syst Comput 340:177–186

    Google Scholar 

  32. Alihodzic A, Tuba M (2014) Improved bat algorithm applied to multilevel image thresholding, Sci World J, Vol. 2014, Article ID 176718, 16 pages

  33. Gao H, Xu W, Sun J, Tang Y (2010) Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Trans Instrum Meas 59(4):934–946

    Article  Google Scholar 

  34. Shah-Hosseini H (2013) Multilevel thresholding for image segmentation using the galaxy-based search algorithm. Int J Intell Syst Appl 5(11):19

    Google Scholar 

  35. Raja N, Rajinikanth V, Latha K (2014) Otsu based optimal multilevel image thresholding using firefly algorithm. Modell Simul Eng 2014:37

    Google Scholar 

  36. Yang XS (2008) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, Frome

    Google Scholar 

  37. Yang Xin-She (2013) Bat algorithm: literature review and applications. Int J Bio-Inspired Comput 5(3):141–149

    Article  Google Scholar 

  38. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  39. Liao PS, Chen TS, Chung PC (2001) A fast algorithm for multi-level thresholding. J Inf Sci Eng 17(5):713–727

    Google Scholar 

  40. Manda Kalyani, Satapathy SC, Poornasatyanarayana B (2012) Population based meta-heuristic techniques for solving optimization problems: a selective survey. Int J Emerg Technol Adv Eng 2(11):206–211

    Google Scholar 

  41. Fister IJ, Yang XS, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Electrotech Rev 80(3):1–7

    MATH  Google Scholar 

  42. Yang XS, Deb S (2012) Two-stage eagle strategy with differential evolution. Int J Bio-Inspired Comput 4(1):1–5

    Article  Google Scholar 

  43. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  44. Ikeda K (1979) Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt Commun 30:257–261

    Article  Google Scholar 

  45. Ikeda K, Daido H, Akimoto O (1980) Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys Rev Lett 45:709–712

    Article  Google Scholar 

  46. Alsing PM, Gavrielides A, Kovanis V (1994) Controlling unstable periodic orbits in a nonlinear optical system: the Ikeda map In: IEEE nonlinear optics: materials, fundamentals, and applications, NOL’94 IEEE, pp 72–74. doi:10.1109/NLO.1994.470856

  47. Paula ASD, Savi MA (2009) Controlling maps using an OGY multiparameter Chaos control method, In: 20th international congress of mechanical engineering, proceedings of COBEM 2009, November 15–20

  48. Liao P-S, Chung P-C (2001) A fast algorithm for multilevel thresholding. J Inf Sci Eng 17(5):713–727

    Google Scholar 

  49. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error measurement to structural similarity. IEEE Trans Image Process 13(1):1–14

    Google Scholar 

  50. Hore A, Ziou D (2010) Image quality metrics: Psnr vs. Ssim, In: IEEE international conference on pattern recognition (ICPR), Istanbul, Turkey, pp. 2366–2369

  51. http://decsai.ugr.es/cvg/CG/base.htm

  52. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html

  53. Moraru Luminita, Bibicu Dorin, Biswas Anjan (2013) Standalone functional CAD system for multi-object case analysis in hepatic disorders. Comput Biol Med 43(8):967–974

    Article  Google Scholar 

  54. Punga MV, Gaurav R, Moraru R (2014) Level set method coupled with energy image features for brain MR image segmentation. Biomed Eng/Biomedizinische Technik 59(3):219–229

    Google Scholar 

  55. Araki Tadashi, Ikeda Nobutaka, Dey Nilanjan, Chakraborty Sayan, Saba Luca, Kumar Dinesh, Godia Elisa Cuadrado et al (2015) A comparative approach of four different image registration techniques for quantitative assessment of coronary artery calcium lesions using intravascular ultrasound. Comput Methods Programs Biomed 118(2):158–172

    Article  Google Scholar 

  56. Ikeda Nobutaka, Gupta Ajay, Dey Nilanjan, Bose Soumyo, Shafique Shoaib, Arak Tadashi, Godia Elisa Cuadrado et al (2015) Improved correlation between carotid and coronary atherosclerosis SYNTAX score using automated ultrasound carotid bulb plaque IMT measurement. Ultrasound Med Biol 41(5):1247–1262

    Article  Google Scholar 

  57. Araki T, Ikeda D, Dey N, Acharjee S, Molinari F, Saba L, Godia EC, Nicolaides A, Suri JS (2015) Shape-based approach for coronary calcium lesion volume measurement on intravascular ultrasound imaging and its association with carotid intima-media thickness. J Ultrasound Med 34(3):469–482

    Article  Google Scholar 

  58. Araki T, Ikeda N, Molinari F, Dey N, Acharjee S, Saba L, Suri JS (2014) Link between automated coronary calcium volumes from intravascular ultrasound to automated carotid IMT from B-mode ultrasound in coronary artery disease population. Int Angiol 33(4):392–403

    Google Scholar 

  59. Ikeda N, Araki T, Dey N, Bose S, Shafique S, El-Baz A, Godia E, Cuadrado M, Anzidei L, Saba L, Suri JS (2014) Automated and accurate carotid bulb detection, its verification and validation in low quality frozen frames and motion video. Int Angiol 33(6):573–589

    Google Scholar 

  60. Araki T, Ikeda N, Molinari F, Dey N, Acharjee SM, Saba L, Nicolaides A, Suri JS (2014) Effect of geometric-based coronary calcium volume as a feature along with its shape-based attributes for cardiological risk prediction from low contrast intravascular ultrasound. J Med Imaging Health Inform 4(2):255–261

    Article  Google Scholar 

  61. Saba L, Dey N, Ashour AS, Samanta S, Nath SS, Chakraborty S, Chakraborty J, Kumar D, Marinho D, Suri JS (2016) Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm. Comput Methods Programs Biomed 130:118–134

    Article  Google Scholar 

  62. Virmani J, Dey N, Kumar V (2016) PCA-PNN and PCA-SVM based CAD systems for breast density classification. In: Applications of intelligent optimization in biology and medicine, pp. 159–180. Springer International Publishing, Berlin

  63. Kausar N, Palaniappan S, Samir BB, Abdullah A, Dey N (2016) Systematic analysis of applied data mining based optimization algorithms in clinical attribute extraction and classification for diagnosis of cardiac patients. In: Applications of intelligent optimization in biology and medicine, pp. 217–231. Springer International Publishing, Berlin

  64. Cheriguene S, Azizi N, Zemmal N, Dey N, Djellali H, Farah N (2016) Optimized tumor breast cancer classification using combining random subspace and static classifiers selection paradigms. In: Applications of intelligent optimization in biology and medicine, pp. 289–307. Springer International Publishing, Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira S. Ashour.

Ethics declarations

Conflict of interest

We are the authors and confirm that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satapathy, S.C., Sri Madhava Raja, N., Rajinikanth, V. et al. Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput & Applic 29, 1285–1307 (2018). https://doi.org/10.1007/s00521-016-2645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2645-5

Keywords

Navigation