Skip to main content
Erschienen in: Neural Computing and Applications 4/2018

16.12.2016 | Original Article

Classification of motor imagery electroencephalography signals using spiking neurons with different input encoding strategies

Erschienen in: Neural Computing and Applications | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Motor imagery-based brain–computer interfaces decode users’ intentions from the electroencephalogram; however, poor spatial resolution makes automatic recognition of these intentions a challenging task. New classification approaches with low computational costs and high classification performances need to be developed in order to increase the number of users benefitted by these systems. On the other hand, spiking neuron models, which are mathematical abstractions of real neurons, have shown good performances in several classification tasks, making these models suitable for motor imagery classification. In this work, two different encoding strategies for spiking neuron models, applied to the classification of motor imagery time–frequency features of stroke patients and healthy subjects, were evaluated. Classification performances and computational costs of spiking neuron models were compared against those of linear discriminant analysis, support vector machines and artificial neural networks. Results showed that a time-varying encoding strategy is more suitable for motor imagery classification, and its implementation computational cost is low. Therefore, a spiking neuron model with a time-varying encoding strategy could increase the number of potential users of brain–computer interfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mozaffarian D, Benjamin EJ, Go AS et al (2015) Hearth disease and stroke statistics 2015 update a report from the American Heath Association. Circulation 131:29–322CrossRef Mozaffarian D, Benjamin EJ, Go AS et al (2015) Hearth disease and stroke statistics 2015 update a report from the American Heath Association. Circulation 131:29–322CrossRef
2.
Zurück zum Zitat Rodriguez M, Llanos C, Sabate M (2009) The kinematicks of motor imagery: comparing the dynamics of real and virtual movements. Neuropsychologia 47(2):489–496CrossRef Rodriguez M, Llanos C, Sabate M (2009) The kinematicks of motor imagery: comparing the dynamics of real and virtual movements. Neuropsychologia 47(2):489–496CrossRef
3.
Zurück zum Zitat Carrillo-de-la-peña MT, Galdo-Alvarez S, Lastra-Barreira C (2008) Equivalent is not equal: primary motor cortex (MI) activation during motor imagery and execution of sequential movements. Brain Res 1226:134–143CrossRef Carrillo-de-la-peña MT, Galdo-Alvarez S, Lastra-Barreira C (2008) Equivalent is not equal: primary motor cortex (MI) activation during motor imagery and execution of sequential movements. Brain Res 1226:134–143CrossRef
4.
Zurück zum Zitat Kraeutner S, Gionfriddo A, Bardouille C, Boe S (2014) Motor imagery-based brain activity parallels that of motor execution: evidence from magnetic source imaging of cortical oscillations. Brain Res 1588:81–91CrossRef Kraeutner S, Gionfriddo A, Bardouille C, Boe S (2014) Motor imagery-based brain activity parallels that of motor execution: evidence from magnetic source imaging of cortical oscillations. Brain Res 1588:81–91CrossRef
5.
Zurück zum Zitat Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/EMG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857CrossRef Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/EMG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857CrossRef
6.
Zurück zum Zitat Nguyen T, Khosravi T, Creighton D, Nahavandi S (2015) Fuzzy system with tabu search learning for classification of motor imagery data. Biomed Signal Proces 20:61–70CrossRef Nguyen T, Khosravi T, Creighton D, Nahavandi S (2015) Fuzzy system with tabu search learning for classification of motor imagery data. Biomed Signal Proces 20:61–70CrossRef
7.
Zurück zum Zitat Muller-Putz GR, Kaiser V, Solis-Escalante T, Prurtscheller G (2010) Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG. Med Biol Eng Comput 48:229–233CrossRef Muller-Putz GR, Kaiser V, Solis-Escalante T, Prurtscheller G (2010) Fast set-up asynchronous brain-switch based on detection of foot motor imagery in 1-channel EEG. Med Biol Eng Comput 48:229–233CrossRef
8.
Zurück zum Zitat Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) EEG data classification using wavelet features selected by Wilcoxon statistics. Neural Comput Appl 26:1193–1202CrossRef Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) EEG data classification using wavelet features selected by Wilcoxon statistics. Neural Comput Appl 26:1193–1202CrossRef
9.
Zurück zum Zitat Ahangi A, Karamnejad M, Mohammadi N, Ebrahimpour R, Bagheri N (2013) Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Comput Appl 23:1319–1327CrossRef Ahangi A, Karamnejad M, Mohammadi N, Ebrahimpour R, Bagheri N (2013) Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Comput Appl 23:1319–1327CrossRef
10.
Zurück zum Zitat Xanthopoulos P, Pardalos PM, Trafalis TB (2013) Linear discriminant analysis. In: Xanthopoulos P, Pardalos PM, Trafalis TB (eds) Robust data mining, 1st edn. Springer, Berlin, pp 27–33CrossRef Xanthopoulos P, Pardalos PM, Trafalis TB (2013) Linear discriminant analysis. In: Xanthopoulos P, Pardalos PM, Trafalis TB (eds) Robust data mining, 1st edn. Springer, Berlin, pp 27–33CrossRef
11.
Zurück zum Zitat Xanthopoulos P, Pardalos PM, Trafalis TB (2013) Support vector machines. In: Xanthopoulos P, Pardalos PM, Trafalis TB (eds) Robust data mining, 1st edn. Springer, Berlin, pp 35–48CrossRef Xanthopoulos P, Pardalos PM, Trafalis TB (2013) Support vector machines. In: Xanthopoulos P, Pardalos PM, Trafalis TB (eds) Robust data mining, 1st edn. Springer, Berlin, pp 35–48CrossRef
12.
Zurück zum Zitat Xingui H, Shaohua X (2010) Artificial neural networks. In: Xingui H, Shaohua X (eds) Process neural networks, theory and applications. Springer, Berlin, pp 20–42 Xingui H, Shaohua X (2010) Artificial neural networks. In: Xingui H, Shaohua X (eds) Process neural networks, theory and applications. Springer, Berlin, pp 20–42
13.
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRef
14.
Zurück zum Zitat Gerstner W, Kistler WM (2002) Formal spiking neuron models. In: Gerstner W, Kistler WM (eds) Spiking neuron models. Cambridge University Press, Cambridge, pp 94–97CrossRef Gerstner W, Kistler WM (2002) Formal spiking neuron models. In: Gerstner W, Kistler WM (eds) Spiking neuron models. Cambridge University Press, Cambridge, pp 94–97CrossRef
15.
Zurück zum Zitat Izhikevich EM (2003) Simple model of spiking neurons. IEEE T Neural Networ 14:1569–1572CrossRef Izhikevich EM (2003) Simple model of spiking neurons. IEEE T Neural Networ 14:1569–1572CrossRef
16.
Zurück zum Zitat Xu Y, Zeng X, Lixin H, Jing Y (2013) A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Neural Netw 43:99–113CrossRefMATH Xu Y, Zeng X, Lixin H, Jing Y (2013) A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Neural Netw 43:99–113CrossRefMATH
17.
Zurück zum Zitat Bohte SM, Kok JN, La Poutré H (2002) Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48:17–37CrossRefMATH Bohte SM, Kok JN, La Poutré H (2002) Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48:17–37CrossRefMATH
18.
Zurück zum Zitat Yu Q, Tang H, Tan KC, Yu H (2014) A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138:3–13CrossRef Yu Q, Tang H, Tan KC, Yu H (2014) A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138:3–13CrossRef
19.
Zurück zum Zitat Gutig R, Sompolinsky H (2006) The tempotron a neuron that learns spike timing based decisions. Nat Neurosci 9:420–428CrossRef Gutig R, Sompolinsky H (2006) The tempotron a neuron that learns spike timing based decisions. Nat Neurosci 9:420–428CrossRef
20.
Zurück zum Zitat Polunak F, Kasinski A (2010) Supervised learning in spiking neural networks with resume: sequence learning, classification and spike shifting. Neural Comput 22(2):467–510MathSciNetCrossRefMATH Polunak F, Kasinski A (2010) Supervised learning in spiking neural networks with resume: sequence learning, classification and spike shifting. Neural Comput 22(2):467–510MathSciNetCrossRefMATH
21.
Zurück zum Zitat Wang J, Belatreche A, Maguire L, McGinnity TA (2014) An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 144:526–536CrossRef Wang J, Belatreche A, Maguire L, McGinnity TA (2014) An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 144:526–536CrossRef
22.
Zurück zum Zitat Kasabov NK (2014) NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw 52:62–76CrossRef Kasabov NK (2014) NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw 52:62–76CrossRef
23.
Zurück zum Zitat Cachon A, Vázquez RA (2015) Tuning the parameters of an integrate and fire neuron via a genetic algorithm for solving pattern recognition problems. Neurocomputing 148:187–197CrossRef Cachon A, Vázquez RA (2015) Tuning the parameters of an integrate and fire neuron via a genetic algorithm for solving pattern recognition problems. Neurocomputing 148:187–197CrossRef
24.
Zurück zum Zitat Garro BA, Rodriguez K, Vazquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560CrossRef Garro BA, Rodriguez K, Vazquez RA (2016) Classification of DNA microarrays using artificial neural networks and ABC algorithm. Appl Soft Comput 38:548–560CrossRef
26.
Zurück zum Zitat Garro BA, Vázquez RA (2015) Designing artificial neural networks using particle swarm optimization algorithms. Comput Intel Neurosci. doi:10.1155/2015/369298 Garro BA, Vázquez RA (2015) Designing artificial neural networks using particle swarm optimization algorithms. Comput Intel Neurosci. doi:10.​1155/​2015/​369298
27.
Zurück zum Zitat Kampakis S (2012) Improved Izhikevich neurons for spiking neural networks. Soft Comput 16(6):943–953CrossRef Kampakis S (2012) Improved Izhikevich neurons for spiking neural networks. Soft Comput 16(6):943–953CrossRef
28.
Zurück zum Zitat Kasabov N, Capecci E (2015) Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inform Sci 294:565–575MathSciNetCrossRef Kasabov N, Capecci E (2015) Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inform Sci 294:565–575MathSciNetCrossRef
29.
Zurück zum Zitat Chen Y, Hu J, Kasabov N, Hou Z, Cheng L (2013) NeuCubRehab: a pilot study for EEG classification in rehabilitation practice based on spiking neural networks. In: Lee M, Hirose A, Hou ZG, Kil RM (eds) Neural information processing. Springer, Berlin, pp 70–77CrossRef Chen Y, Hu J, Kasabov N, Hou Z, Cheng L (2013) NeuCubRehab: a pilot study for EEG classification in rehabilitation practice based on spiking neural networks. In: Lee M, Hirose A, Hou ZG, Kil RM (eds) Neural information processing. Springer, Berlin, pp 70–77CrossRef
30.
Zurück zum Zitat Pfurtscheller G, Nueper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89(7):1123–1134CrossRef Pfurtscheller G, Nueper C (2001) Motor imagery and direct brain–computer communication. Proc IEEE 89(7):1123–1134CrossRef
31.
Zurück zum Zitat Hjort B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroen Clin Neuro 39:526–530CrossRef Hjort B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroen Clin Neuro 39:526–530CrossRef
32.
Zurück zum Zitat Cantillo-Negrete J, Gutierrez-Martinez J, Flores-Rodriguez TB, Carino-Escobar RI, Elias-Vinas D (2014) Characterization of electrical brain activity related to hand motor imagery on healthy subjects. Rev Invest Clin 66(S1):111–121 Cantillo-Negrete J, Gutierrez-Martinez J, Flores-Rodriguez TB, Carino-Escobar RI, Elias-Vinas D (2014) Characterization of electrical brain activity related to hand motor imagery on healthy subjects. Rev Invest Clin 66(S1):111–121
33.
Zurück zum Zitat Cantillo-Negrete J, Gutíerrez-Martínez J, Carino-Escobar RI, Carrillo-Mora P, Elias-Viñas D (2014) An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender. BioMed Eng OnLine. doi:10.1186/1475-925X-13-158 Cantillo-Negrete J, Gutíerrez-Martínez J, Carino-Escobar RI, Carrillo-Mora P, Elias-Viñas D (2014) An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender. BioMed Eng OnLine. doi:10.​1186/​1475-925X-13-158
34.
Zurück zum Zitat Oostenveld R, Fries P, Eric M, Shoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intel Neurosci. doi:10.1155/2011/156869 Oostenveld R, Fries P, Eric M, Shoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intel Neurosci. doi:10.​1155/​2011/​156869
35.
Zurück zum Zitat Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability bursting. MIT Press, Cambridge Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability bursting. MIT Press, Cambridge
36.
Zurück zum Zitat Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE international conference on evolutionary computation, pp 69–73 Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE international conference on evolutionary computation, pp 69–73
37.
Zurück zum Zitat Muller-Putz JR, Sherer R, Brunner C, Leeb R, Pfurtscheller G (2008) Better than random? A closer look on BCI results. Int J Bioeletromagn 10:52–55 Muller-Putz JR, Sherer R, Brunner C, Leeb R, Pfurtscheller G (2008) Better than random? A closer look on BCI results. Int J Bioeletromagn 10:52–55
38.
Zurück zum Zitat Edlinger G, Allison BZ, Guger C (2014) How many people can use a BCI system? In: Kansaku K, Cohen LG, Birbaumer N (eds) Clinical systems neuroscience. Springer, Berlin, pp 33–66 Edlinger G, Allison BZ, Guger C (2014) How many people can use a BCI system? In: Kansaku K, Cohen LG, Birbaumer N (eds) Clinical systems neuroscience. Springer, Berlin, pp 33–66
39.
Zurück zum Zitat Choi D, Ryu Y, Lee Y, Lee M (2011) Performance evaluation of a motor-imagery-based EEG-Brain computer interface using a combined cue with heterogeneos training data in BCI-Naïve subjects. BioMed Eng Online 10(91):1–12 Choi D, Ryu Y, Lee Y, Lee M (2011) Performance evaluation of a motor-imagery-based EEG-Brain computer interface using a combined cue with heterogeneos training data in BCI-Naïve subjects. BioMed Eng Online 10(91):1–12
40.
Zurück zum Zitat Rodríguez-Bermúdez G, García-Laecina P (2012) Automatic and adaptative classification of electroencephalographic signals for brain computer interfaces. J Med Syst 36(1):51–63CrossRef Rodríguez-Bermúdez G, García-Laecina P (2012) Automatic and adaptative classification of electroencephalographic signals for brain computer interfaces. J Med Syst 36(1):51–63CrossRef
41.
Zurück zum Zitat Li Y, Koike Y (2011) A real-time BCI with a small number of channels based on CSP. Neural Comput Appl 20:1187–1192CrossRef Li Y, Koike Y (2011) A real-time BCI with a small number of channels based on CSP. Neural Comput Appl 20:1187–1192CrossRef
42.
43.
Zurück zum Zitat Kasabov N, Scott N, Tu E, Marks S, Sengupta N, Capecci E, Othman M, Doborjeh M, Murli N, Hartono R, Espinosa-Ramos J, Zhou L, Alvi F, Wang G, Taylor D, Gulyaev S, Mahmoud M, Hou ZG, Yang J (2016) Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Networks 78:1–14CrossRef Kasabov N, Scott N, Tu E, Marks S, Sengupta N, Capecci E, Othman M, Doborjeh M, Murli N, Hartono R, Espinosa-Ramos J, Zhou L, Alvi F, Wang G, Taylor D, Gulyaev S, Mahmoud M, Hou ZG, Yang J (2016) Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Networks 78:1–14CrossRef
Metadaten
Titel
Classification of motor imagery electroencephalography signals using spiking neurons with different input encoding strategies
Publikationsdatum
16.12.2016
Erschienen in
Neural Computing and Applications / Ausgabe 4/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2767-9

Weitere Artikel der Ausgabe 4/2018

Neural Computing and Applications 4/2018 Zur Ausgabe