Skip to main content
Erschienen in: Neural Computing and Applications 10/2018

25.02.2017 | Original Article

An efficient computational approach for time-fractional Rosenau–Hyman equation

verfasst von: Jagdev Singh, Devendra Kumar, Ram Swroop, Sunil Kumar

Erschienen in: Neural Computing and Applications | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we concentrate on the analysis of the time-fractional Rosenau–Hyman equation occurring in the formation of patterns in liquid drops via q-homotopy analysis transform technique and reduced differential transform approach. The q-homotopy analysis transform algorithm can provide rapid convergent series by choosing the appropriate values of auxiliary parameters ħ and n at large domain. The reduced differential transform technique gives wider applicability due to reduction in computations and makes the calculation much simpler and easier. The proposed techniques are realistic and free from any assumption and perturbation for solving the time-fractional Rosenau–Hyman equation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Atangana A, Alabaraoye E (2013) Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller–Segel equations. Adv Differ Equ. doi:10.1186/1687-1847-2013-94 CrossRefMATH Atangana A, Alabaraoye E (2013) Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller–Segel equations. Adv Differ Equ. doi:10.​1186/​1687-1847-2013-94 CrossRefMATH
2.
Zurück zum Zitat Rivero M, Trujillo J, Vazquez L, Velasco M (2011) Fractional dynamics of populations. Appl Math Comput 218:1089–1095MathSciNetMATH Rivero M, Trujillo J, Vazquez L, Velasco M (2011) Fractional dynamics of populations. Appl Math Comput 218:1089–1095MathSciNetMATH
3.
Zurück zum Zitat Chen Y, An YH (2009) Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl Math Comput 200:87–95MathSciNetMATH Chen Y, An YH (2009) Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl Math Comput 200:87–95MathSciNetMATH
4.
Zurück zum Zitat Su X (2009) Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl Math Lett 22:64–69MathSciNetCrossRef Su X (2009) Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl Math Lett 22:64–69MathSciNetCrossRef
5.
Zurück zum Zitat Jafari H, Tajadodi H (2015) Numerical solution of the fractional advection-dispersion equation. Progr Fract Differ Appl 1:37–45 Jafari H, Tajadodi H (2015) Numerical solution of the fractional advection-dispersion equation. Progr Fract Differ Appl 1:37–45
7.
Zurück zum Zitat Zhang S (2009) Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives. Nonlinear Anal 71:2087–2093MathSciNetCrossRef Zhang S (2009) Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives. Nonlinear Anal 71:2087–2093MathSciNetCrossRef
8.
Zurück zum Zitat Kumar D, Singh J, Baleanu D (2016) Numerical computation of a fractional model of differential-difference equation. J Comput Nonlin Dyn 11(6):061004. doi:10.1115/1.4033899 CrossRef Kumar D, Singh J, Baleanu D (2016) Numerical computation of a fractional model of differential-difference equation. J Comput Nonlin Dyn 11(6):061004. doi:10.​1115/​1.​4033899 CrossRef
9.
Zurück zum Zitat Oldham KB, Spanier J (1974) The fractional calculus: integrations and differentiations of arbitrary order. Academic Press, New YorkMATH Oldham KB, Spanier J (1974) The fractional calculus: integrations and differentiations of arbitrary order. Academic Press, New YorkMATH
10.
Zurück zum Zitat Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent. Part II. J R Astron Soc 13:529–539CrossRef Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent. Part II. J R Astron Soc 13:529–539CrossRef
11.
Zurück zum Zitat Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach, LondonMATH Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach, LondonMATH
12.
Zurück zum Zitat Carpinteri A, Mainardi F (1997) Fractional calculus in continuum mechanics. Springer, New YorkCrossRef Carpinteri A, Mainardi F (1997) Fractional calculus in continuum mechanics. Springer, New YorkCrossRef
13.
Zurück zum Zitat Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH Podlubny I (1999) Fractional differential equations. Academic Press, San DiegoMATH
14.
Zurück zum Zitat Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New YorkMATH Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New YorkMATH
16.
Zurück zum Zitat Maraaba TA, Jarad F, Baleanu D (2008) On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives. Sci China Ser A Math 51:1775–1786MathSciNetCrossRef Maraaba TA, Jarad F, Baleanu D (2008) On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives. Sci China Ser A Math 51:1775–1786MathSciNetCrossRef
17.
Zurück zum Zitat Rosenau P, Hyman JM (1993) Compactons: solitons with finite wavelength. Phys Rev Lett 70:564–567CrossRef Rosenau P, Hyman JM (1993) Compactons: solitons with finite wavelength. Phys Rev Lett 70:564–567CrossRef
19.
Zurück zum Zitat Bazeia D, Das A, Losano L, Santos MJ (2010) Traveling wave solutions of nonlinear partial differential equations. Appl Math Lett 23:681–686MathSciNetCrossRef Bazeia D, Das A, Losano L, Santos MJ (2010) Traveling wave solutions of nonlinear partial differential equations. Appl Math Lett 23:681–686MathSciNetCrossRef
20.
Zurück zum Zitat Rus F, Villatoro FR (2007) Self-similar radiation from numerical Rosenau–Hyman compactons. J Comput Phys 227:440–454MathSciNetCrossRef Rus F, Villatoro FR (2007) Self-similar radiation from numerical Rosenau–Hyman compactons. J Comput Phys 227:440–454MathSciNetCrossRef
21.
Zurück zum Zitat Rus F, Villatoro FR (2007) Padè numerical method for the Rosenau–Hyman compacton equation. Math Comput Simul 76:188–192CrossRef Rus F, Villatoro FR (2007) Padè numerical method for the Rosenau–Hyman compacton equation. Math Comput Simul 76:188–192CrossRef
22.
Zurück zum Zitat Rus F, Villatoro FR (2009) A repository of equations with cosine/sine compactons. Appl Math Comput 215:1838–1851MathSciNetMATH Rus F, Villatoro FR (2009) A repository of equations with cosine/sine compactons. Appl Math Comput 215:1838–1851MathSciNetMATH
23.
Zurück zum Zitat Rus F, Villatoro FR (2008) Numerical methods based on modified equations for nonlinear evolution equations with compactons. Appl Math Comput 204:416–422MathSciNetMATH Rus F, Villatoro FR (2008) Numerical methods based on modified equations for nonlinear evolution equations with compactons. Appl Math Comput 204:416–422MathSciNetMATH
24.
Zurück zum Zitat Molliq RY, Noorani MSM (2012) Solving the fractional Rosenau–Hyman equation via variational iteration method and homotopy perturbation method. Int J Differ Equ 2012. Article ID 472030 Molliq RY, Noorani MSM (2012) Solving the fractional Rosenau–Hyman equation via variational iteration method and homotopy perturbation method. Int J Differ Equ 2012. Article ID 472030
25.
Zurück zum Zitat El-Tawil MA, Huseen SN (2012) The q-homotopy analysis method (q- HAM). Int J Appl Math Mech 8:51–75 El-Tawil MA, Huseen SN (2012) The q-homotopy analysis method (q- HAM). Int J Appl Math Mech 8:51–75
26.
Zurück zum Zitat El-Tawil MA, Huseen SN (2013) On convergence of the q-homotopy analysis method. Int J Contemp Math Sci 8:481–497MathSciNetCrossRef El-Tawil MA, Huseen SN (2013) On convergence of the q-homotopy analysis method. Int J Contemp Math Sci 8:481–497MathSciNetCrossRef
27.
Zurück zum Zitat Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. Thesis, Shanghai Jiao Tong University Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. Thesis, Shanghai Jiao Tong University
28.
Zurück zum Zitat Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. Chaoman and Hall/CRC Press, Boca RatonCrossRef Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. Chaoman and Hall/CRC Press, Boca RatonCrossRef
30.
Zurück zum Zitat He JH (2003) Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 135:73–79MathSciNetMATH He JH (2003) Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 135:73–79MathSciNetMATH
31.
Zurück zum Zitat He JH (2006) New interpretation of homotopy perturbation method. Int J Mod Phys B 20:2561–2568CrossRef He JH (2006) New interpretation of homotopy perturbation method. Int J Mod Phys B 20:2561–2568CrossRef
32.
Zurück zum Zitat Khuri SA (2001) A Laplace decomposition algorithm applied to a class of nonlinear differential equations. J Appl Math 1:141–155MathSciNetCrossRef Khuri SA (2001) A Laplace decomposition algorithm applied to a class of nonlinear differential equations. J Appl Math 1:141–155MathSciNetCrossRef
33.
Zurück zum Zitat Khan Y, Wu Q (2011) Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput Math Appl 61(8):1963–1967MathSciNetCrossRef Khan Y, Wu Q (2011) Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput Math Appl 61(8):1963–1967MathSciNetCrossRef
34.
Zurück zum Zitat Kumar D, Singh J, Kumar S (2015) A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid. J Assoc Arab Univ Basic Appl Sci 17:14–19 Kumar D, Singh J, Kumar S (2015) A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid. J Assoc Arab Univ Basic Appl Sci 17:14–19
35.
Zurück zum Zitat Kumar S, Kumar A, Kumar D, Singh J, Singh A (2015) Analytical solution of Abel integral equation arising in astrophysics via Laplace transform. J Egypt Math Soc 23(1):102–107MathSciNetCrossRef Kumar S, Kumar A, Kumar D, Singh J, Singh A (2015) Analytical solution of Abel integral equation arising in astrophysics via Laplace transform. J Egypt Math Soc 23(1):102–107MathSciNetCrossRef
36.
Zurück zum Zitat Khan M, Gondal MA, Hussain I, Karimi Vanani S (2012) A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on semi-infinite domain. Math Comput Model 55:1143–1150MathSciNetCrossRef Khan M, Gondal MA, Hussain I, Karimi Vanani S (2012) A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on semi-infinite domain. Math Comput Model 55:1143–1150MathSciNetCrossRef
37.
Zurück zum Zitat Kumar D, Singh J, Kumar S, Sushila (2014) Numerical computation of Klein-Gordon equations arising in quantum field theory by using homotopy analysis transform method. Alex Eng J 53(2):469–474CrossRef Kumar D, Singh J, Kumar S, Sushila (2014) Numerical computation of Klein-Gordon equations arising in quantum field theory by using homotopy analysis transform method. Alex Eng J 53(2):469–474CrossRef
38.
Zurück zum Zitat Yin XB, Kumar S, Kumar D (2015) A modified homotopy analysis method for solution of fractional wave equations. Adv Mech Eng 7(12):1–8CrossRef Yin XB, Kumar S, Kumar D (2015) A modified homotopy analysis method for solution of fractional wave equations. Adv Mech Eng 7(12):1–8CrossRef
39.
Zurück zum Zitat Keskin Y, Oturanc G (2010) Reduced differential transform method: a new approach to factional partial differential equations. Nonlinear Sci Lett A 1:61–72 Keskin Y, Oturanc G (2010) Reduced differential transform method: a new approach to factional partial differential equations. Nonlinear Sci Lett A 1:61–72
40.
Zurück zum Zitat Gupta PK (2011) Approximate analytical solutions of fractional Benney–Lin equation by reduced differential transform method and the homotopy perturbation method. Comput Math Appl 58:2829–2842MathSciNetCrossRef Gupta PK (2011) Approximate analytical solutions of fractional Benney–Lin equation by reduced differential transform method and the homotopy perturbation method. Comput Math Appl 58:2829–2842MathSciNetCrossRef
42.
Zurück zum Zitat Caputo M (1969) Elasticita e dissipazione. Zani-Chelli, Bologna Caputo M (1969) Elasticita e dissipazione. Zani-Chelli, Bologna
43.
Zurück zum Zitat Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, AmsterdamMATH Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, AmsterdamMATH
44.
Zurück zum Zitat Clarkson PA, Mansfield EL, Priestley TJ (1997) Symmetries of a class of nonlinear third-order partial differential equations. Math Comput Modell 25(8–9):195–212MathSciNetCrossRef Clarkson PA, Mansfield EL, Priestley TJ (1997) Symmetries of a class of nonlinear third-order partial differential equations. Math Comput Modell 25(8–9):195–212MathSciNetCrossRef
Metadaten
Titel
An efficient computational approach for time-fractional Rosenau–Hyman equation
verfasst von
Jagdev Singh
Devendra Kumar
Ram Swroop
Sunil Kumar
Publikationsdatum
25.02.2017
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 10/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-2909-8

Weitere Artikel der Ausgabe 10/2018

Neural Computing and Applications 10/2018 Zur Ausgabe