Skip to main content
Erschienen in: Neural Computing and Applications 14/2021

02.05.2020 | S. I : Intelligent Computing Methodologies in Machine learning for IoT Applications

Indoor scene segmentation algorithm based on full convolutional neural network

verfasst von: Zijiang Zhu, Deming Li, Yi Hu, Junshan Li, Dong Liu, Jianjun Li

Erschienen in: Neural Computing and Applications | Ausgabe 14/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the leaps and bounds of computer performance and the advent of the era of big data, deep learning has drawn more and more attention from all walks of life. It can combine low-level features to form more abstract high-level features and describe the data more essentially. Therefore, it is widely used in various fields such as computer vision. Image segmentation is one of the most basic research topics in the field of computer vision. The main purpose is to extract regions of interest from images for later image processing research. In 3D reconstruction based on sequence images, the segmentation accuracy and speed of sequence images determine the quality and efficiency of target reconstruction. Therefore, when facing large-scale sequence images, the biggest problem is how to improve the segmentation speed while ensuring accuracy. Based on the above background, the research content of this article is an indoor scene segmentation algorithm based on full convolutional neural network. According to the characteristics of indoor application scenes, this paper proposes a fast convolutional neural network image segmentation method to segment the indoor scene image and construct the fast fully convolutional networks (FFCN) for indoor scene image segmentation uses inter-layer fusion to reduce the amount of network calculation parameters and avoid the loss of picture feature information by continuous convolution. In order to verify the effectiveness of the network, in this paper, a basic living object data set (XAUT data set) in an indoor environment is created. The XAUT data set is used to train the FFCN network under the Caffe framework to obtain an indoor scene segmentation model. In order to compare the effectiveness of the model, the structure of the worn FCN8s, FCN16s, and FCN32s models was fine-tuned, and the corresponding algorithm model for indoor scene segmentation was obtained by training with the XAUT data set. The experimental results show that the pixel recognition accuracy of all types of networks has reached 86%, and the mean IU ratio has reached more than 63%. The mean IU of the FCN8s network is the highest at 70.38%, but its segmentation speed is only 1/5 of FFCN. On the premise that other types of indicators are not much different, the average segmentation speed on FFCN fast segmentation convolutional neural network reaches 40 fps. It can be seen that the scale fusion technology can well avoid the loss of image feature information in the network convolution and reddening process. Compared with other FCN networks, it has a faster speed and is conducive to real-time image preprocessing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dong X, Shen J, Shao L et al (2016) SubMarkov random walk for image segmentation. IEEE Trans Image Process 25(2):516–527MathSciNetCrossRef Dong X, Shen J, Shao L et al (2016) SubMarkov random walk for image segmentation. IEEE Trans Image Process 25(2):516–527MathSciNetCrossRef
2.
Zurück zum Zitat Zhu F, Bosch M, Khanna N et al (2015) Multiple hypotheses image segmentation and classification with application to dietary assessment. IEEE J Biomed Health Inf 19(1):377–388CrossRef Zhu F, Bosch M, Khanna N et al (2015) Multiple hypotheses image segmentation and classification with application to dietary assessment. IEEE J Biomed Health Inf 19(1):377–388CrossRef
3.
Zurück zum Zitat Chen LC, Papandreou G, Kokkinos I et al (2016) DeepLab: semantic Image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRef Chen LC, Papandreou G, Kokkinos I et al (2016) DeepLab: semantic Image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848CrossRef
4.
Zurück zum Zitat Zhu H, Meng F, Cai J et al (2015) Beyond pixels: a comprehensive survey from bottom-up to semantic image segmentation and cosegmentation. J Vis Commun Image Represent 34(2):12–27 Zhu H, Meng F, Cai J et al (2015) Beyond pixels: a comprehensive survey from bottom-up to semantic image segmentation and cosegmentation. J Vis Commun Image Represent 34(2):12–27
5.
Zurück zum Zitat Pont-Tuset J, Marques F (2015) Supervised evaluation of image segmentation and object proposal techniques. IEEE Trans Pattern Anal Mach Intell 38(7):1 Pont-Tuset J, Marques F (2015) Supervised evaluation of image segmentation and object proposal techniques. IEEE Trans Pattern Anal Mach Intell 38(7):1
6.
Zurück zum Zitat Sridevi M, Mala C (2019) Self-organizing neural networks for image segmentation based on multiphase active contour. Neural Comput Appl 31:865–876CrossRef Sridevi M, Mala C (2019) Self-organizing neural networks for image segmentation based on multiphase active contour. Neural Comput Appl 31:865–876CrossRef
7.
Zurück zum Zitat Jiazi C, Aiguo S (2015) Research on the texture image segmentation method based on Markov random field. Chin J Sci Instrum 36(4):776–786 Jiazi C, Aiguo S (2015) Research on the texture image segmentation method based on Markov random field. Chin J Sci Instrum 36(4):776–786
8.
Zurück zum Zitat Deng C, Li S, Bian F et al (2015) Remote sensing image segmentation based on mean shift algorithm with adaptive bandwidth[J]. Commun Comput Inf Sci 482:179–185 Deng C, Li S, Bian F et al (2015) Remote sensing image segmentation based on mean shift algorithm with adaptive bandwidth[J]. Commun Comput Inf Sci 482:179–185
9.
Zurück zum Zitat Zhang SMBH (2015) A comparison of stochastic optimization techniques for image segmentation. Int J Intell Syst 15(5):441–476MATH Zhang SMBH (2015) A comparison of stochastic optimization techniques for image segmentation. Int J Intell Syst 15(5):441–476MATH
10.
Zurück zum Zitat Liang Y, Zhang M, Browne WN (2019) Figure-ground image segmentation using feature-based multi-objective genetic programming techniques. Neural Comput Appl 31:3075–3094CrossRef Liang Y, Zhang M, Browne WN (2019) Figure-ground image segmentation using feature-based multi-objective genetic programming techniques. Neural Comput Appl 31:3075–3094CrossRef
11.
Zurück zum Zitat Zeng T (2016) Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Trans Med Imaging 99:447–456 Zeng T (2016) Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Trans Med Imaging 99:447–456
12.
Zurück zum Zitat Kiranyaz S, Ince T, Gabbouj M (2015) Real-time patient-specific ECG classification by 1D convolutional neural networks. IEEE Trans Bio-med Eng 63(3):664–675CrossRef Kiranyaz S, Ince T, Gabbouj M (2015) Real-time patient-specific ECG classification by 1D convolutional neural networks. IEEE Trans Bio-med Eng 63(3):664–675CrossRef
13.
Zurück zum Zitat Saito S, Yamashita T, Aoki Y (2016) Multiple object extraction from aerial imagery with convolutional neural networks. Electron Imag 60(1):10402-1–10402-9 Saito S, Yamashita T, Aoki Y (2016) Multiple object extraction from aerial imagery with convolutional neural networks. Electron Imag 60(1):10402-1–10402-9
14.
Zurück zum Zitat Zhao K, He D (2015) Recognition of individual dairy cattle based on convolutional neural networks. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 31(5):181–187 Zhao K, He D (2015) Recognition of individual dairy cattle based on convolutional neural networks. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 31(5):181–187
15.
Zurück zum Zitat Xu Z, Mei L, Lv Z, Hu C, Luo X, Zhang H, Liu Y (2019) Multi-modal description of public safety events using surveillance and social media. IEEE Trans Big Data 5(4):529–539CrossRef Xu Z, Mei L, Lv Z, Hu C, Luo X, Zhang H, Liu Y (2019) Multi-modal description of public safety events using surveillance and social media. IEEE Trans Big Data 5(4):529–539CrossRef
16.
Zurück zum Zitat He T, Huang W, Qiao Y et al (2015) Text-attentional convolutional neural networks for scene text detection. IEEE Trans Image Process Publ IEEE Signal Process Soc 25(6):2529MathSciNetCrossRef He T, Huang W, Qiao Y et al (2015) Text-attentional convolutional neural networks for scene text detection. IEEE Trans Image Process Publ IEEE Signal Process Soc 25(6):2529MathSciNetCrossRef
17.
Zurück zum Zitat Hou Y, Li Z, Wang P et al (2018) Skeleton optical spectra-based action recognition using convolutional neural networks. IEEE Trans Circuits Syst Video Technol 28(3):807–811CrossRef Hou Y, Li Z, Wang P et al (2018) Skeleton optical spectra-based action recognition using convolutional neural networks. IEEE Trans Circuits Syst Video Technol 28(3):807–811CrossRef
18.
Zurück zum Zitat Bondi L, Baroffio L, Güera D et al (2016) First steps toward camera model identification with convolutional neural networks. IEEE Signal Process Lett 24(3):259–263CrossRef Bondi L, Baroffio L, Güera D et al (2016) First steps toward camera model identification with convolutional neural networks. IEEE Signal Process Lett 24(3):259–263CrossRef
19.
Zurück zum Zitat Nogueira RF, Lotufo RDA, Machado RC (2017) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Secur 11(6):1206–1213CrossRef Nogueira RF, Lotufo RDA, Machado RC (2017) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Secur 11(6):1206–1213CrossRef
20.
Zurück zum Zitat Dong Z, Wu Y, Pei M et al (2015) Vehicle type classification using unsupervised convolutional neural network. IEEE Trans Intell Transp Syst 16(4):1–10CrossRef Dong Z, Wu Y, Pei M et al (2015) Vehicle type classification using unsupervised convolutional neural network. IEEE Trans Intell Transp Syst 16(4):1–10CrossRef
21.
Zurück zum Zitat Poudel RPK, Lamata P, Montana G (2016) Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. Lect Notes Comput Sci 3824(1):164–173 Poudel RPK, Lamata P, Montana G (2016) Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. Lect Notes Comput Sci 3824(1):164–173
22.
Zurück zum Zitat Bell S, Bala K (2015) Learning visual similarity for product design with convolutional neural networks. ACM Trans Graph 34(4):98:1–98:10CrossRef Bell S, Bala K (2015) Learning visual similarity for product design with convolutional neural networks. ACM Trans Graph 34(4):98:1–98:10CrossRef
23.
Zurück zum Zitat Garbin D, Vianello E, Bichler O et al (2015) HfO2-based OxRAM devices as synapses for convolutional neural networks. IEEE Trans Electron Dev 62(8):2494–2501CrossRef Garbin D, Vianello E, Bichler O et al (2015) HfO2-based OxRAM devices as synapses for convolutional neural networks. IEEE Trans Electron Dev 62(8):2494–2501CrossRef
24.
Zurück zum Zitat Castelluccio M, Poggi G, Sansone C et al (2015) Land use classification in remote sensing images by convolutional neural networks. Acta Ecol Sin 28(2):627–635 Castelluccio M, Poggi G, Sansone C et al (2015) Land use classification in remote sensing images by convolutional neural networks. Acta Ecol Sin 28(2):627–635
25.
Zurück zum Zitat Zhou W, Newsam S, Li C et al (2016) Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval. Remote Sensing 9(5):489CrossRef Zhou W, Newsam S, Li C et al (2016) Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval. Remote Sensing 9(5):489CrossRef
Metadaten
Titel
Indoor scene segmentation algorithm based on full convolutional neural network
verfasst von
Zijiang Zhu
Deming Li
Yi Hu
Junshan Li
Dong Liu
Jianjun Li
Publikationsdatum
02.05.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 14/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04961-0

Weitere Artikel der Ausgabe 14/2021

Neural Computing and Applications 14/2021 Zur Ausgabe

S. I : Intelligent Computing Methodologies in Machine learning for IoT Applications

Text tendency analysis based on multi-granularity emotional chunks and integrated learning

S. I : Intelligent Computing Methodologies in Machine learning for IoT Applications

Neural network control system of cooperative robot based on genetic algorithms