Skip to main content
Log in

Γ-limits and relaxations for rate-independent evolutionary problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This work uses the energetic formulation of rate-independent systems that is based on the stored-energy functionals \({\mathcal{E}}\) and the dissipation distance \({\mathcal{D}}\) . For sequences \(({\mathcal{E}}_k)_{k\in {\mathbb{N}}}\) and \(({\mathcal{D}}_k)_{k\in {\mathbb{N}}}\) we address the question under which conditions the limits q of solutions \(q_k : [0, T]\to {\mathcal{Q}}\) satisfy a suitable limit problem with limit functionals \({\mathcal{E}}_\infty\) and \({\mathcal{D}}_\infty\) , which are the corresponding Γ-limits. We derive a sufficient condition, called conditional upper semi-continuity of the stable sets, which is essential to guarantee that q solves the limit problem. In particular, this condition holds if certain joint recovery sequences exist. Moreover, we show that time-incremental minimization problems can be used to approximate the solutions. A first example involves the numerical approximation of functionals using finite-element spaces. A second example shows that the stop and the play operator converge if the yield sets converge in the sense of Mosco. The third example deals with a problem developing microstructure in the limit k → ∞, which in the limit can be described by an effective macroscopic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P., Frankowska, H.: Set-valued analysis. Systems & Control: Foundations & Applications, vol. 2. Birkhäuser Boston Inc., Boston (1990)

    Google Scholar 

  2. Auricchio, F., Mielke, A., Stefanelli, U.: A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. M3AS Math. Models Meth. Appl. Sci. WIAS Preprint 1170 (2006, submitted)

  3. Attouch, H.: Variational Convergence of Functions and Operators. Pitman Advanced Publishing Program, Pitman (1984)

  4. Bartels S., Carstensen S., Hackl K., Hoppe U. (2004). Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Eng. 193: 5143–5175

    Article  MATH  MathSciNet  Google Scholar 

  5. Brandon D., Fonseca I., Swart P. (2001). Oscillations in a dynamical model of phase transitions. Proc. R. Soc. Edinb. Sect. A 131(1): 59–81

    Article  MATH  MathSciNet  Google Scholar 

  6. Braides, A.: Γ-convergence for beginners. Oxford Lect. Series Math. Appl., vol. 22. Oxford University Press, New York (2002)

  7. Brenier Y. (1999). Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math. 52: 411–452

    Article  MathSciNet  Google Scholar 

  8. Brenier Y. (2000). Derivation of the Euler equations from a caricature of Coulomb interaction. Comm. Math. Phys. 212: 93–104

    Article  MATH  MathSciNet  Google Scholar 

  9. Conti S., Theil F. (2005). Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178: 125–148

    Article  MATH  MathSciNet  Google Scholar 

  10. Dal Maso G. (1993). An introduction to Γ-convergence. Birkhäuser Boston Inc., Boston

    Google Scholar 

  11. Dal Maso G., DeSimone A., Mora M., Morini M. (2007). Time-dependent systems of generalized Young measures. Netw. Heterog. Media 2: 1–36

    MathSciNet  Google Scholar 

  12. Dal Maso, G., DeSimone, A., Mora, M., Morini, M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. (2007, to appear)

  13. Dal Maso G., Francfort G., Toader R. (2005). Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176: 165–225

    Article  MATH  MathSciNet  Google Scholar 

  14. Francfort G., Mielke A. (2006). Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine angew. Math. 595: 55–91

    MATH  MathSciNet  Google Scholar 

  15. Giacomini A., Ponsiglione M. (2006). A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Ration. Mech. Anal. 180: 399–447

    Article  MATH  MathSciNet  Google Scholar 

  16. Giacomini A., Ponsiglione M. (2006). Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Math. Models Methods Appl. Sci. 16: 77–118

    Article  MATH  MathSciNet  Google Scholar 

  17. Han W., Reddy B.D. (1999). Convergence analysis of discrete approximations of problems in hardeningplasticity. Comput. Methods Appl. Mech. Eng. 171: 327–340

    Article  MATH  MathSciNet  Google Scholar 

  18. Han, W., Reddy, B.D., Plasticity (Mathematical Theory and Numerical Analysis). Interdisciplinary Applied Mathematics, vol. 9. Springer, New York (1999)

  19. Kružík M., Mielke A., Roubíček T. (2005). Modelling of microstructure and its evolution in shape- memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40: 389–418

    Article  MathSciNet  Google Scholar 

  20. Krejčí, P.: Evolution variational inequalities and multidimensional hysteresis operators. In: Nonlinear differential equations (Chvalatice, 1998). Chapman & Hall/CRC Res. Notes Math., vol. 404, pp. 47–110. Chapman & Hall/CRC, Boca Raton, FL (1999)

  21. Mainik, A.: A rate-independent model for phase transformations in shape-memory alloys. PhD Thesis, IADM, Universität Stuttgart (2005)

  22. Mainik, A.: A rate-independent model for phase transformations in shape-memory alloys. Archive Rational Mech. Analysis (2007, to appear) (Universität Stuttgart, SFB404 Preprint 2006/2004)

  23. Mielke A. (1999). Flow properties for Young-measure solutions of semilinear hyperbolic problems. Proc. R. Soc. Edinb. Sect. A 129: 85–123

    MATH  MathSciNet  Google Scholar 

  24. Mielke A. (2004). Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comput. Methods Appl. Mech. Eng. 193: 5095–5127

    Article  MATH  MathSciNet  Google Scholar 

  25. Mielke, A.: Evolution in rate-independent systems (Chap. 6). In: Dafermos C., Feireisl E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 2, pp. 461–559. Elsevier B.V., Amsterdam (2005)

  26. Mielke, A.: A mathematical framework for generalized standard materials in the rate-independent case. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds.) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol. 28, pp. 351–379. Springer, Berlin (2006)

  27. Mainik A., Mielke A. (2005). Existence results for energetic models for rate-independent systems. Calc. Var. PDEs 22: 73–99

    Article  MATH  MathSciNet  Google Scholar 

  28. Mielke, A., Ortiz, M.: A class of minimum principles for characterizing the trajectories of dissipative systems. SAIM Control Optim. Calc. Var. (2007, to appear) WIAS Preprint 1136

  29. Mielke M., Roubíček T. (2003). A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1: 571–597

    Article  MATH  MathSciNet  Google Scholar 

  30. Mielke, A., Roubíček T.: Numerical approaches to rate-independent processes and applications in inelasticity. M2AN Math. Model. Numer. Anal. (2006, submitted) WIAS Preprint 1169

  31. Mielke A., Rossi R. (2007). Existence and uniqueness results for a class of rate-independent hysteresisproblems. M3 AS Math. Models Methods Appl. Sci. 17: 81–123

    Article  MATH  MathSciNet  Google Scholar 

  32. Mielke, A., Theil F.: On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl. (NoDEA), 11, 151–189, (2004) (Accepted July 2001)

    Google Scholar 

  33. Mielke, A., Timofte, A.M.: Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. (2007, to appear) WIAS Preprint 1172

  34. Mielke A., Theil F., Levitas V.I. (2002). A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162: 137–177

    Article  MATH  MathSciNet  Google Scholar 

  35. Ortiz M., Repetto E., Stainier L. (2000). A theory of subgrain dislocation structures. J. Mech. Phys.Solids 48: 2077–2114

    Article  MATH  MathSciNet  Google Scholar 

  36. Ortner, C.: Gradient flows as a selection procedure for equilibria of nonconvex energies. SIAM J. Math. Anal. 38, 1214–1234 (electronic) (2006)

    Google Scholar 

  37. Otto F. (1998). Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Ration. Mech. Anal. 141: 63–103

    Article  MATH  MathSciNet  Google Scholar 

  38. Sandier E., Serfaty S. (2004). Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Comm. Pure Appl. Math. LVII: 1627–1672

    Article  MathSciNet  Google Scholar 

  39. Stefanelli, U.: The Brezis–Ekeland principle for doubly nonlinear equations. IMATI-CNR Preprint, 41-PV (2006)

  40. Stefanelli, U.: Some remarks on convergence and approximation for a class of hysteresis problems. Istit. Lombardo Acad. Sci. Lett. Rend. A (2007, to appear)

  41. Stefanelli, U.: A variational principle for hardening elastoplasticity. Preprint IMATI-CNR, n. 11PV07/11/8 (2007)

  42. Theil F. (1998). Young-measure solutions for a viscoelastically damped wave equation with nonmonotone stress-strain relation. Arch. Ration. Mech. Anal. 144: 47–78

    Article  MATH  MathSciNet  Google Scholar 

  43. Theil F. (2002). Relaxation of rate-independent evolution problems. Proc. R. Soc. Edinb. Sect. A 132: 463–481

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke.

Additional information

Research partially supported by LC06052 (MŠMT), MSM21620839 (MŠMT), A1077402 (GAČR), by the Deutsche Forschungsgemeinschaft under MATHEON C18 and under SFB404 C7, by the European Union under HPRN-CT-2002-00284 Smart Systems, and by the Alexander von Humboldt-Stiftung. Both, TR and US gratefully acknowledge the kind hospitality of the WIAS, where this research was initiated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, A., Roubíček, T. & Stefanelli, U. Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. 31, 387–416 (2008). https://doi.org/10.1007/s00526-007-0119-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0119-4

Mathematics Subject Classification (2007)

Navigation