Skip to main content
Log in

A new class of transport distances between measures

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We introduce a new class of distances between nonnegative Radon measures in \({\mathbb{R}^d}\) . They are modeled on the dynamical characterization of the Kantorovich-Rubinstein-Wasserstein distances proposed by Benamou and Brenier (Numer Math 84:375–393, 2000) and provide a wide family interpolating between the Wasserstein and the homogeneous \({W^{-1,p}_\gamma}\) -Sobolev distances. From the point of view of optimal transport theory, these distances minimize a dynamical cost to move a given initial distribution of mass to a final configuration. An important difference with the classical setting in mass transport theory is that the cost not only depends on the velocity of the moving particles but also on the densities of the intermediate configurations with respect to a given reference measure γ. We study the topological and geometric properties of these new distances, comparing them with the notion of weak convergence of measures and the well established Kantorovich-Rubinstein-Wasserstein theory. An example of possible applications to the geometric theory of gradient flows is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L., Buttazzo G.: Weak lower semicontinuous envelope of functionals defined on a space of measures. Ann. Mat. Pura Appl. 150(4), 311–339 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio L., Fusco N., Pallara D.: Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. Clarendon Press, Oxford (2000)

    Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005)

  4. Ambrosio L., Santambrogio F.: Necessary optimality conditions for geodesics in weighted Wasserstein spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 18(9), 23–37 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Ambrosio, L., Savaré, G., Zambotti, L.: Existence and stability for Fokker-Planck equations with log-concave reference measure, Prepriny, arxiv:0704.2458v1. Probab. Theory Relat. Fields (2007) (to appear)

  6. Arnold A., Markowich P., Toscani G., Unterreiter A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differ. Equ. 26, 43–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borell C.: Convex measures on locally convex spaces. Ark. Mat. 12, 239–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brancolini A., Buttazzo G., Santambrogio F.: Path functionals over Wasserstein spaces. J. Eur. Math. Soc. (JEMS) 8, 415–434 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Buttazzo, G., Jimenez, C., Oudet, E.: An optimization problem for mass transportation with congested dynamics. Preprint (2007). http://cvgmt.sns.it

  12. Carrillo, J., Lisini, S., Savaré, G.: in preparation, (2008)

  13. Daneri, S., Savaré, G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. Preprint, arXiv:0801.2455v1. SIAM J. Math. Anal. (2008) (to appear)

  14. De Giorgi, E.: New problems on minimizing movements. In: Baiocchi, C., Lions, J.L. (eds.) Boundary Value Problems for PDE and Applications, pp. 81–98. Masson 1993

  15. Dellacherie C., Meyer P.-A.: Probabilities and potential, vol. 29 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  16. Dolbeault, J., Nazaret, B., Savaré, G.: in preparation (2008)

  17. Evans, L.C.: Partial differential equations and Monge-Kantorovich mass transfer, in Current developments in mathematics, 1997, pp. 65–126. Int. Press, Boston (1999)

  18. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137, viii+66 (1999)

  19. Gangbo W., McCann R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maréchal P.: On a functional operation generating convex functions. I. Duality. J. Optim. Theory Appl. 126, 175–189 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maréchal P.: On a functional operation generating convex functions. II. Algebraic properties. J. Optim. Theory Appl. 126, 357–366 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nash J.: C 1 isometric imbeddings. Ann. Math. 60, 383–396 (1954) (electronic)

    Article  MathSciNet  Google Scholar 

  24. Nash J: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956) (electronic)

    Article  MathSciNet  Google Scholar 

  25. Otto, F.: Doubly degenerate diffusion equations as steepest descent. Manuscript (1996)

  26. Otto F.: Evolution of microstructure in unstable porous media flow: a relaxational approach. Comm. Pure Appl. Math. 52, 873–915 (1999) (electronic)

    Article  MathSciNet  Google Scholar 

  27. Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26, 101–174 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  28. Otto F., Villani C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  29. Otto F., Westdickenberg M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37, 1227–1255 (2005) (electronic)

    Article  MathSciNet  Google Scholar 

  30. Rachev S.T., Rüschendorf L.: Mass transportation problems. Probability and its Applications. vol. I. Springer, New York (1998) (electronic)

    Google Scholar 

  31. Rocckafellar R.: A general correspondence between dual minimax problems and convex problems. Pac. J. Math. 25, 597–611 (1968) (electronic)

    Google Scholar 

  32. Villani, C.: Topics in optimal transportation. In: Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

  33. Villani C.: Optimal Transport, Old and New. Springer, Heidelberg (2008) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Savaré.

Additional information

J. Dolbeault and B. Nazaret have been partially supported by the ANR project IFO. The second author has also been partially supported by the ANR project OTARIE. G. Savaré has been partially supported by grants of M.I.U.R., PRIN ’06. Part of this research was carried out while the third author was visiting professor at Ceremade, Université Paris-Dauphine, whose hospitality and support are also gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolbeault, J., Nazaret, B. & Savaré, G. A new class of transport distances between measures. Calc. Var. 34, 193–231 (2009). https://doi.org/10.1007/s00526-008-0182-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0182-5

Mathematics Subject Classification (2000)

Navigation