Skip to main content
Log in

Geodesic convexity of the relative entropy in reversible Markov chains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider finite-dimensional, time-continuous Markov chains satisfying the detailed balance condition as gradient systems with the relative entropy E as driving functional. The Riemannian metric is defined via its inverse matrix called the Onsager matrix K. We provide methods for establishing geodesic λ-convexity of the entropy and treat several examples including some discretizations of one-dimensional Fokker–Planck equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005)

  2. Arnrich S., Mielke A., Peletier M.A., Savaré G., Veneroni M.: Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction. Calc. Var. Partial Differ. Equ. 44, 419–454 (2012)

    Article  MATH  Google Scholar 

  3. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In: Lectures on Probability Theory (Saint-Flour, 1992), vol. 1581 of Lecture Notes in Mathematics, pp. 1–114. Springer, Berlin (1994)

  4. Bakry, D., Emery, M.: Diffusions hypercontractives. In: Séminaire de probabilité, XIX, 1983/1984, vol. 1123 of Lecture Notes in Mathematics, pp. 177–206. Springer, Berlin (1985)

  5. Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme. Numer. Math., to appear (2011)

  7. Bonciocat A.-I., Sturm K.-T.: Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 256, 2944–2966 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chow S.-N., Huang W., Li Y., Zhou H.: Fokker–Planck equations for a free energy functional of Markov process on a graph. Arch. Rational Mech. Anal. 203(3), 969–1008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daneri S., Savaré G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40, 1104–1122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daneri, S., Savaré, G.:Lecture notes on gradient flows and optimal transport. arXiv:1009.3737v1, 2010.

  11. Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy. arXiv: 1111.2687, 2011. Arch. Ration. Mech. Anal., to appear (2012)

  12. Eymard, R., Gallouët, T., Herbin, R.: The finite volume method. In: Handbook of Mumerical Analysis, vol. VII, pp. 715–1022. North Holland, Amsterdam (2000)

  13. Glitzky A.: Exponential decay of the free energy for discretized electro-reaction-diffusion systems. Nonlinearity 21(9), 1989–2009 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glitzky A., Gärtner K.: Energy estimates for continuous and discretized electro-reaction-diffusion systems. Nonlinear Anal. 70(2), 788–805 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurtz T.G.: Solutions of ordinary differential equations as limits of pure jump processes. J. Appl. Prob. 7, 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liero, M., Mielke, A.: Gradient structures and geodesic convexity for reaction-diffusion systems. Philos. Trans. R. Soc. A, submitted (2012), WIAS preprint 1701 (April 2012)

  18. Lott J., Villani C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(2–3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maas J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261, 2250–2292 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mielke A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24, 1329–1346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mielke, A.: Thermomechanical modeling of energy-reaction-diffusion systems, including bulk–interface interactions. Discr. Contin. Dyn. Syst. Ser. S, To appear (2012). WIAS preprint 1661 (2011)

  23. Ollivier Y.: Ricci curvature of markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Onsager, L.: Reciprocal relations in irreversible processes, I + II. Phys. Rev. 37, 405–426 (part II, 38, 2265–2227) (1931)

    Google Scholar 

  25. Onsager S., Machlup L.: Fluctuations and irreversible processes. Phys. Rev. 91(6), 1505–1512 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  26. Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, Hoboken (2005)

  28. Otto F., Westdickenberg M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37, 1227–1255 (2005)

    Article  MathSciNet  Google Scholar 

  29. Sturm, K.-T.: On the geometry of metric measure spaces. I + II. Acta Math. 196(1), 1–131 + 133–177 (2006)

    Google Scholar 

  30. von Renesse M.-K., Sturm K.-T.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, A. Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. 48, 1–31 (2013). https://doi.org/10.1007/s00526-012-0538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0538-8

Keywords

Mathematics Subject Classification

Navigation