Skip to main content
Log in

From dimension free concentration to the Poincaré inequality

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove that a probability measure on an abstract metric space satisfies a non trivial dimension free concentration inequality for the \(\ell _2\) metric if and only if it satisfies the Poincaré inequality. Under some additional assumptions, our result extends to convex sets situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By locally Lipschitz, we mean Lipschitz on every ball of finite radius.

References

  1. Aida, S., Stroock, D.: Moment estimates derived from poincaré and logarithmic sobolev inequalities. Math. Res. Lett. 1, 75–86 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    MATH  MathSciNet  Google Scholar 

  3. Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques. In: Panoramas et Synthèses [Panoramas and Syntheses], vol. 10. Société Mathématique de France, Paris. With a preface by Dominique Bakry and Michel Ledoux (2000)

  4. Burago, D., Burago, Y., Ivanov, I.: A Course in Metric Geometry, vol. 33. American Mathematical Society, Providence (2001)

  5. Balogh, Z.M., Engulatov, A., Hunziker, L., Maasalo, O.E.: Functional inequalities and Hamilton–Jacobi equations in geodesic spaces. Potential Anal. 36(2), 317–337 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bobkov, S.G., Gentil, I., Ledoux, M.: Hypercontractivity of Hamilton–Jacobi equations. J. Math. Pures Appl. (9) 80(7), 669–696 (2001)

  7. Bobkov, S.G., Götze, F.: Discrete isoperimetric and poincaré-type inequalities. Probab. Theory Relat. Fields 114(2), 245–277 (1999)

    Article  MATH  Google Scholar 

  8. Bridson, M., Haefliger, A.: Metric Spaces of Non-Positive Curvature. In: Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)

  9. Bobkov, S.G., Houdré, C.: Weak dimension-free concentration of measure. Bernoulli 6(4), 621–632 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bobkov, S.G., Ledoux, M.: Poincaré’s inequalities and talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Relat. Fields 107(3), 383–400 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borell, C.: The brunn–minkowski inequality in gauss space. Invent. Math. 30(2), 207–216 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  12. Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(2), 213–230 (1982)

  13. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969). Princeton University Press, Princeton, pp 195–199 (1970)

  14. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

  15. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

  16. Funano, K., Shioya, T.: Concentration, ricci curvature and laplacian. Geom. Funct. Anal. 23(3), 888–936 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gigli, N., Ledoux, M.: From log sobolev to talagrand: a quick proof. Discret. Contin. Dyn. Syst. 33(5), 1927–1935 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gozlan, N.: A characterization of dimension free concentration in terms of transport inequalities. Ann. Probab. 37(6), 2480–2498 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gozlan, N.: Poincaré inequalities and dimension free concentration of measure. Ann. Inst. Henri Poincaré Probab. Stat. 46(3), 703–739 (2010)

    Article  MathSciNet  Google Scholar 

  20. Gozlan, N., Léonard, C.: Transport inequalities. a survey. Markov Process. Relat. Fields 16(4), 635–736 (2010)

    MATH  Google Scholar 

  21. Gozlan, N., Roberto, C., Samson, P.M.: From concentration to logarithmic Sobolev and Poincaré inequalities. J. Funct. Anal. 260(5), 1491–1522 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gozlan, N., Roberto, C., Samson, P.M.: Characterization of Talagrand’s transport-entropy inequalities on metric spaces. Ann. Probab. 41(5), 3112–3139 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gozlan, N., Roberto, C., Samson, P.M.: Hamilton–Jacobi equations on metric spaces and transport-entropy inequalities. Rev. Mat. Iberoam. 30(1), 133–163 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. In: Progress in Mathematics, vol. 152. Birkhäuser Boston Inc., Boston (1999). Based on the 1981 French original [MR0682063 (85e:53051)]. With appendices by Katz, M., Pansu, P., Semmes, S. Translated from the French by Sean Michael Bates

  25. Gromov, M., Milman, V.D.: A topological application of the isoperimetric inequality. Am. J. Math. 105(4), 843–854 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kannan, R., Lovász, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemma. Discret. Comput. Geom. 13(3–4), 541–559 (1995)

    Article  MATH  Google Scholar 

  27. Ledoux, M.: A simple analytic proof of an inequality by P. Buser. Proc. Am. Math. Soc. 121(3), 951–959 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ledoux, M.: The concentration of measure phenomenon. In: Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence (2001)

  29. Ledoux, M.: Spectral gap, logarithmic Sobolev constant, and geometric bounds. In: Surveys in Differential Geometry. Vol. IX, pp. 219–240. Int. Press, Somerville (2004)

  30. Lott, J., Villani., C.: Hamilton–Jacobi semigroup on length spaces and applications. J. Math. Pures Appl. 88((3)), 219–229 (2007.)

    Article  MathSciNet  Google Scholar 

  31. Marton, K.: A simple proof of the blowing-up lemma. IEEE Trans. Inf. Theory 32(3), 445–446 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Maurey, B.: Some deviation inequalities. Geom. Funct. Anal. 1(2), 188–197 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. Maz’ja, V.G.: Sobolev spaces. In: Springer Series in Soviet Mathematics. Springer, New York (1985)

  34. Milman, E.: On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177(1), 1–43 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Milman, E.: Isoperimetric and concentration inequalities: equivalence under curvature lower bound. Duke Math. J. 154(2), 207–239 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Milman, E.: Isoperimetric bounds on convex manifolds. In: Concentration, Functional Inequalities and Isoperimetry, vol. 545 of Contemp. Math., pp. 195–208. American Mathematical Society, Providence (2011)

  37. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Papadopoulos, A.: Metric spaces, convexity and nonpositive curvature. IRMA Lectures in Mathematics and Theoretical Physics, vol. 6. EMS (2005)

  39. Schmuckenschläger, M.: Martingales, Poincaré type inequalities, and deviation inequalities. J. Funct. Anal. 155(2), 303–323 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Sudakov, V.N., Cirel\(^{\prime }\)son, B.S.: Extremal properties of half-spaces for spherically invariant measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41, 14–24, 165 (1974). Problems in the theory of probability distributions, II

  41. Talagrand, M.: A new isoperimetric inequality and the concentration of measure phenomenon. In: Geometric Aspects of Functional Analysis (1989–1990). Lecture Notes in Math., vol. 1469, pp. 94–124. Springer, Berlin (1991)

  42. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publ. Mathématiques de l’IHES 81, 73–203 (1995)

  43. Talagrand, M.: Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6(3), 587–600 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  44. Van der Vaart, A.W.: Asymptotic statistics. In: Cambridge Series in Statistical and Probabilistic Mathematics, vol. 3. Cambridge University Press, Cambridge (1998)

  45. Villani, C.: Optimal transport: old and new. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer, Berlin (2009)

Download references

Acknowledgments

The authors would like to thank Emanuel Milman for commenting the main result of this paper and for mentioning to them that the method of proof used by Talagrand [41], to prove Corollary 4.1, could be extended to cover general situations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathael Gozlan.

Additional information

Communicated by L. Ambrosio.

The authors were partially supported by the “Agence Nationale de la Recherche” through the grants ANR 2011 BS01 007 01 and ANR 10 LABX-58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozlan, N., Roberto, C. & Samson, PM. From dimension free concentration to the Poincaré inequality. Calc. Var. 52, 899–925 (2015). https://doi.org/10.1007/s00526-014-0737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0737-6

Mathematics Subject Classification (1991)

Navigation